Skip to main content
Log in

An improvement of the step-by-step analysis method for study on passive flutter control of a bridge deck

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present study investigated the problem of increasing the critical flutter wind speed of long-span bridges by using tuned mass dampers (TMDs) on both theoretical and experimental aspect. The governing equations of motion of a bridge deck with TMD are analytically formulated. The method of step-by-step flutter analysis is improved and extended from the 2-DOF model to the 4-DOF model to calculate the critical flutter wind speed and parameters of TMD. A sectional model wind tunnel test is carried out to examine and validate the numerical results, and some new findings from the obtained results are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

h :

Heaving motion

\(\alpha \) :

Torsional motion

\(\rho \) :

Air density

\(y_1 , y_2 \) :

Relative motion of TMD masses

B :

Deck width or along-wind dimension of the structure

l :

Longitudinal length of the test model

\(b_C \) :

Horizontal distance from TMD mass to the bending center of the test model

\(k_h , k_\alpha \) :

Stiffness associated with heaving motion and torsional motion, respectively

\(c_h , c_\alpha \) :

Damping coefficient associated with heaving motion and torsional motion, respectively

\(k_{_{C}} , c_{_{C}}\) :

Stiffness and damping coefficient of TMD, respectively

m :

Mass

I :

Mass inertia moment

\(m_C \) :

Mass of TMD

t :

Time

U :

Uniform approach velocity of the wind

\(U_F \) :

Critical flutter wind speed

\(U_{F\mathrm{opt}} \) :

Critical flutter wind speed with optimal flutter control

\(L_h , M_\alpha \) :

Self-controlled lift and moment, respectively

\(\omega \) :

Angular frequency of vibration

\(\omega _h , \omega _\alpha \) :

Angular natural frequency of heaving motion and torsional motion, respectively

\(f_C \) :

Natural frequency of TMD

\(\zeta _h , \zeta _\alpha \) :

Lehr damping corresponding to heaving motion and torsional motion, respectively

K :

Reduced frequency

\(H_i^*,A_i^*\) :

Flutter derivatives

\(\zeta _F \) :

Flutter Lehr damping

\(\omega _F \) :

Flutter angular frequency

References

  1. Gimsing, N.J., Georgakis, C.T.: Cable Supported Bridges: Concept and Design. Wiley, New York (2012)

    Google Scholar 

  2. Starosek, U.: Brückendynamik-Winderregte Schwingungen von Seilbrücken. Vieweg, Braunschweig (1992)

    Google Scholar 

  3. Starossek, U.: Flutter Derivatives for Various Sections Obtained from Experiments and Numerical Simulations. http://www.tuhh.de/tuhh/startseite.html (2009)

  4. Thiesemann, L.: Zur Ermittlung von Flatterderivativa aus Versuchen und mittels numerischer Strömungsmechanik. Dissertation, Hamburg University of Technology (2008)

  5. Simiu, E., Scanlan, R.H.: Wind Effects on Structures. Wiley, New York (1996)

    Google Scholar 

  6. Nobuto, J., Fujino, Y., Ito, M.: A study on the effectiveness of TMD to suppress a coupled flutter of bridge deck. Proc. Jpn. Soc. Civ. Eng. 398/I–10, 413–416 (1988)

    Google Scholar 

  7. Gu, M., et al.: Increase of critical flutter wind speed of long-span bridges using tuned mass dampers. J. Wind Eng. Ind. Aerodyn. 73, 111–123 (1998)

    Article  Google Scholar 

  8. Lin, Y.Y., Cheng, C.M., Lee, C.H.: A tuned mass damper for suppressing the coupled flexural and torsional buffeting response of long-span bridges. Eng. Struct. 22, 1195–1204 (2000)

    Article  Google Scholar 

  9. Chen, X., Kareem, A.: Efficacy of tuned mass dampers for bridge flutter control. ASCE J. Struct. Eng. 129, 1291–1300 (2003)

    Article  Google Scholar 

  10. Kwon, S.D., Park, K.S.: Suppression of bridge flutter using tuned mass dampers based on robust performance design. J. Wind Eng. Ind. Aerodyn. 92(11), 919–934 (2004)

    Article  MathSciNet  Google Scholar 

  11. Wilde, K., Fujino, Y., Kawakami, T.: Analytical and experimental study on passive aerodynamic control of flutter of a bridge deck. J. Wind Eng. Ind. Aerodyn. 80, 105–119 (1999)

    Article  Google Scholar 

  12. Omenzetter, P., Wilde, K., Fujino, Y.: Suppression of wind-induced instabilities of a long span bridge by a passive deck-flaps control system, Part I: formulation. J. Wind Eng. Ind. Aerodyn. 87, 61–79 (2000)

    Article  Google Scholar 

  13. Omenzetter, P., Wilde, K., Fujino, Y.: Suppression of wind-induced instabilities of a long span bridge by a passive deck-flaps control system, Part II: numerical simulations. J. Wind Eng. Ind. Aerodyn. 87, 81–91 (2000)

    Article  Google Scholar 

  14. Omenzetter, P., Wilde, K., Fujino, Y.: Study of passive deck-flaps flutter control system on full bridge model. I: theory. J. Eng. Mech. 128, 264–279 (2002)

    Article  Google Scholar 

  15. Omenzetter, P., Wilde, K., Fujino, Y.: Study of passive deck-flaps flutter control system on full bridge model. II: results. J. Eng. Mech. 128, 280–286 (2002)

    Article  Google Scholar 

  16. Michael, J., Graham, R., et al.: Aeroelastic control of long-span suspension bridges. J. Appl. Mech. 78(4), 041018-1–041018-12 (2011)

    Google Scholar 

  17. Aslan, H., Starossek, U.: Passive control of bridge deck flutter using tuned mass dampers and control surfaces. In: Proceedings of the 7th European Conference on Structural Dynamics Southampton, 7–9 July 2008: E298 (2008)

  18. Ostenfeld, K., Larsen, A.: Bridge engineering and aerodynamics. In: Balkema, A.A. (ed.) Aerodynamics of Large Bridges, pp. 3–22. Rotterdam, Netherlands (1992)

    Google Scholar 

  19. Kobayashi, H., Nagaoka, H.: Active control of flutter of a suspension bridge. J. Wind Eng. Ind. Aerodyn. 41–44, 143–151 (1992)

    Article  Google Scholar 

  20. Wilde, K., Fujino, Y.: Aerodynamic control of bridge deck flutter by active surfaces. J. Eng. Mech. 124, 718–727 (1998)

    Article  Google Scholar 

  21. KörlinR, Bergmann D., Starossek, U.: Numerical-experimental simulation of active flutter control for bridges. Struct. Control Health Monit. 11, 141–157 (2004)

    Article  Google Scholar 

  22. Körlin, R: Aktive mechanische Kontrolle winderregter Brückenschwingungen. Dissertation, Hamburg University of Technology (2007)

  23. Lopes, G.: Aerodynamic Control of Bridge Deck Flutter by Active Surfaces. Dissertation, Pontifica Universidade Catolica (2010)

  24. Scheller, J.: Power-Efficient Active Structural Vibration Control by Twin Rotor Dampers. Dissertation, Hamburg University of Technology (2012)

  25. Matsumoto, M., Kobayashi, Y., Shirato, H.: The influence of aerodynamic derivatives on flutter. J. Wind Eng. Ind. Aerodyn. 60, 227–239 (1996)

    Article  Google Scholar 

  26. Matsumoto, M., Daito, Y., et al.: Torsional flutter of bluff bodies. J. Wind Eng. Ind. Aerodyn. 69–71, 871–882 (1997)

    Article  Google Scholar 

  27. Matsumoto, M., Mizuno, K., et al.: Torsional flutter and branch characteristics for 2-D rectangular cylinders. J. Fluids Struct. 21, 597–608 (2005)

    Article  Google Scholar 

  28. Matsumoto, M., et al.: Flutter instability and recent development in stabilization of structures. J. Wind Eng. Ind. Aerodyn. 95, 888–907 (2007)

    Article  Google Scholar 

  29. Matsumoto, M., Okubo, K., et al.: The complex branch characteristics of coupled flutter. J. Wind Eng. Ind. Aerodyn. 96, 1843–1855 (2008)

    Article  Google Scholar 

  30. Matsumoto, M., Matsumiya, H., et al.: New consideration on flutter properties based on step-by-step analysis. J. Wind Eng. Ind. Aerodyn. 98, 429–437 (2010)

    Article  Google Scholar 

  31. Rao, S.S.: Engineering Optimization—Theory and Practice, 4th edn. Wiley, New Jersey (2009)

    Google Scholar 

  32. Fletcher, R.: Practical Methods of Optimization. Wiley, Chichester (1987)

    MATH  Google Scholar 

Download references

Acknowledgments

This paper was completed with the financial support of the Vietnam National Foundation for Science and Technology Development (NAFOSTED) and the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Khang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Khang, N., Seils, A., An, T.N. et al. An improvement of the step-by-step analysis method for study on passive flutter control of a bridge deck. Arch Appl Mech 86, 557–573 (2016). https://doi.org/10.1007/s00419-015-1046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1046-z

Keywords

Navigation