Skip to main content
Log in

Phase-controlled frequency response measurement of a piezoelectric ring at high vibration amplitude

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This article presents the measurement of the first-order frequency response function (FRF) for a piezoelectric ceramic ring at high vibration amplitudes. Due to the softening-type nonlinearity of piezoelectric materials, the maximum of the FRF is bended toward lower frequencies. Therefore, at high vibration amplitudes the vibration amplitude can become unstable, and this results in the occurrence of the jump phenomena. However, as we drive the piezoelectric ring by phase feedback control of the electric current, the vibration amplitude is stabilized and the whole FRF can be obtained. In addition to the frequency shift induced by the nonlinear behavior, there is an additional frequency change induced by the heat generated in the piezoelectric material. Both effects are investigated experimentally around the first radial mode of the piezoelectric ring. Moreover, the phase-controlled forced excitation driving method is presented, and its implementation is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Uchino, K., Zheng, J., Joshi, A., Chen, Y.H., Yoshikawa, S., Hirose, S., De Vries, J.W.C.: High power characterization of piezoelectric materials. J. Electroceramics 2(1), 33–40 (1998)

    Article  Google Scholar 

  2. Umeda, M., Nakamura, K., Ueha, S.: The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response. Jpn J. Appl. Phys. 37(part 1), 5322–5325 (1998)

    Article  Google Scholar 

  3. Aurelle, N., Guyomar, D., Richard, C., Gonnard, P., Eyraud, L.: Nonlinear behavior of an ultrasonic transducer. Ultrasonics 34(2), 187–191 (1996)

    Article  Google Scholar 

  4. Arafa, M., Baz, A.: On the nonlinear behavior of piezoelectric actuators. J. Vib. Control 10(3), 387–398 (2004)

    Article  MATH  Google Scholar 

  5. Ferreira, J.V., Serpa, A.L., Prado, A.P.: Experimental nonlinear frequency response determination using the arc-length method, IMAC-XXI: Conference & Exposition on Structural Dynamics (2003)

  6. Sieber, J., Krauskopf, B., Wagg, D., Neild, S., Gonzalez-Buelga, A.: Control-based continuation of unstable periodic orbits. J. Comput. Nonlinear Dyn. 6(1), 011005 (2011)

    Article  Google Scholar 

  7. Sieber, J., Gonzalez-Buelga, A., Neild, S.A., Wagg, D.J., Krauskopf, B.: Experimental continuation of periodic orbits through a fold. Phys. Rev. Lett. 100(24), 244101 (2008)

    Article  Google Scholar 

  8. Barton, D.A., Mann, B.P., Burrow, S.G.: Control-based continuation for investigating nonlinear experiments. J. Vib. Control 18(4), 509–520 (2012)

    Article  MathSciNet  Google Scholar 

  9. Barton, D.A., Burrow, S.G.: Numerical continuation in a physical experiment: investigation of a nonlinear energy harvester. J. Comput. Nonlinear Dyn. 6 (2011). doi:10.1115/1.4002380

  10. Sokolov, I.J., Babitsky, V.I.: Phase control of self-sustained vibration. J. Sound Vib. 248(4), 725–744 (2001)

    Article  Google Scholar 

  11. Sokolov, I.J., Babitsky, V.I., Halliwell, N.A.: Autoresonant vibro-impact system with electromagnetic excitation. J. Sound Vib. 308(3), 375–391 (2007)

    Article  Google Scholar 

  12. Mojrzisch, S., Wallaschek, J., Bremer, J.: An experimental method for the phase controlled frequency response measurement of nonlinear vibration systems. PAMM 12(1), 253–254 (2012)

    Article  Google Scholar 

  13. Mojrzisch, S., Ille, I., Wallaschek, J.: Phase controlled frequency response measurement for nonlinear vibration systems, 20th international congress on sound and vibration (2013)

  14. Twiefel, J., Klubal, M., Paiz, C., Mojrzisch, S., Krger, H.: Digital signal processing for an adaptive phase-locked loop controller, 15th international symposium on: smart structures and materials & nondestructive evaluation and health monitoring (2008)

  15. Egan, W.F.: Phase-lock basics. Wiley, New York (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Mojrzisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojrzisch, S., Twiefel, J. Phase-controlled frequency response measurement of a piezoelectric ring at high vibration amplitude. Arch Appl Mech 86, 1763–1769 (2016). https://doi.org/10.1007/s00419-015-1032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1032-5

Keywords

Navigation