Skip to main content
Log in

A new exact semi-analytical solution for buckling analysis of laminated plates under biaxial compression

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript


In the present work, an innovative approach is developed and employed to investigate the buckling load of composite laminated plates using polar representation of the fourth-order flexural stiffness tensor. Based on the Rayleigh–Ritz method for calculating the buckling load of orthotropic uncoupled laminates, a new approach is proposed for calculating the critical buckling load as a function of fiber orientation and the number of layers. A new formula is also represented for measuring the possible numbers of buckling modes based on the length-to-width ratio of the plate. Moreover, the new methods make it easy to handle buckling problems, optimization and design of laminated plates subjected to in-plane loads. The efficiency and precision of this method are proved by numerical examples. The anisotropic parts of the buckling load are calculated, and their polar variations are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Turvey, G.J., Marshall, I.H.: Buckling and Post-buckling of Composite Plates’. Chapman and Hall, UK (1995)

    Book  Google Scholar 

  2. Shanmugam, N.E., Wang, C.M.: Analysis and Design of Plated Structures, Volume 2: Stability. Elsevier, England (2007)

  3. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes sive solutio problematis isoperimetrici latissimo sensu accepti: Vol. 1. Springer Science & Business Media, (1952)

  4. Potier-Ferry, M.: Foundations of elastic postbuckling theory. In: Buckling and Post-buckling, pp. 1–82. Springer, Berlin (1987)

  5. Budiansky, B.: Theory of buckling and post-buckling behavior of elastic structures. J. Adv. Appl. Mech. 14, 1–65 (1974)

  6. Golubitsky, M., Schaeffer, D.G.: A theory for imperfect bifurcation via singularity theory. J. Appl. Math. 1, 21–98, Springer, Berlin (1988)

  7. Bloom, F., Douglas, C.: Handbook of Thin Plate Buckling and Postbuckling. Chapman and Hall/CRC, USA (2000)

    Book  Google Scholar 

  8. March, H.: Buckling of flat plywood plates in compression: shear or combined compression and shear. Forest products, Lab Report, No. 1316 (1942)

  9. Wittrick, W.H.: Correlation between some stability problems for orthotropic and isotropic plates under biaxial and uniaxial direct stress. Aeronaut. Q. 4(1), 83–95 (1952)

    MathSciNet  Google Scholar 

  10. Chamis, C.C.: Buckling of anisotropic composite plates. J. Struct. Div 95(2), 2119–39 (1969)

    Google Scholar 

  11. Prabhakara, M.K., Chia, C.Y.: Post-buckling behaviour of rectangular orthotropic plates. J. Mech. Eng. Sci. 15, 25–33 (1973)

    Article  MATH  Google Scholar 

  12. Ramesh, C., Basava, R.B.: Post-Buckling analysis of rectangular orthotropic plates. Int. J. Mech. Sci. 15, 81–97 (1973)

    Article  MATH  Google Scholar 

  13. Manuel, S.: Post-buckling of orthotropic composite plates loaded in compression. AIAA J. 21(12), 1729–1735 (1983)

    Article  MATH  Google Scholar 

  14. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells, 2nd edn. CRC Press, Boca Raton (2004)

    Google Scholar 

  15. Jones, R.M.: Mechanics of Composite Materials. McGraw-Hill, New York (1975)

    Google Scholar 

  16. Berthelot, J.M.: Matériaux Composites Comportement mécanique et analyse des Structures. MSSON, Paris (1992)

    Google Scholar 

  17. Akbarov, S.D.: Stability Loss and Buckling Delamination. Springer, Berlin (2012)

    Google Scholar 

  18. Shanmugam, N.E., Wang, C.M.: (Eds.) Analysis and Design of Plated Structures: Dynamics (Vol. 1). Elsevier, (2007)

  19. Padmanav, D., Singh, B.N.: Buckling and post-buckling of laminated composite plates. Mech. Res. Commun. 46, 1–7 (2012)

    Article  Google Scholar 

  20. Rosalin, S., Singh, B.N.: A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates. Compos. Struct. 117, 316–332 (2014)

    Article  Google Scholar 

  21. Khalili, S.M.R., Abbaspour, P., Malekzadeh Fard, K.: Buckling of non-ideal simply supported laminated plate on Pasternak foundation. Appl. Math. Comput. 219(12), 6420–6430 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Assaee, H., Hajikazemi, M., Ovesy, H.R.: The effect of anisotropy on post-buckling behavior of laminated plates using semi-energy finite strip method. Compos. Struct. 94(5), 1880–1885 (2012)

    Article  Google Scholar 

  23. Seifi, R., Khoda-yari, N., Hosseini, H.: Study of critical buckling loads and modes of cross-ply laminated annular plates. Compos. Eng. Part B 43(2), 422–430 (2012)

    Article  Google Scholar 

  24. Shadmehri, F., Hoa, S.V., Hojjati, M.: Buckling of conical composite shells. Compos. Struct. 94(2), 787–792 (2012)

    Article  Google Scholar 

  25. Ovesy, H.R., Fazilati, J.: Parametric instability analysis of laminated composite curved shells subjected to non-uniform in-plane load. Compos. Struct. 108, 449–455 (2014)

    Article  Google Scholar 

  26. Ni, Z., Yuan, J., Chen, B.: Buckling of the SS-C-SS-C symmetrical composite rectangular plate under linear-varying in-plane load. Compos. Struct. 107, 528–536 (2014)

    Article  Google Scholar 

  27. Vannucci, P., Verchery, G.: Designing with Anisotropy. Part 2: Laminates Without Membrane-flexure Coupling. Comptes rendus de ICCM 12 (12th International, Conference on Composite Materials), Article N\(^{\circ }\). 572 Paris, (1999)

  28. Vannucci, P., Verchery, G.: Designing with anisotropy. Part 3: Quasi-homogeneous laminates: Comptes rendus de ICCM 12 (Twelfth International Conference on Composite Materials), Article N\(^{\circ }\).573. Paris, France (1999)

  29. Vannucci, P., Verchery, G.: A special class of uncoupled and quasi-homogeneous laminates. Compos. Sci. Tech. 61(10), 1465–1473 (2001)

    Article  Google Scholar 

  30. Kazemi, M.: Contribution to the study of the behavior in buckling of the laminated plates by using the polar method. Ph.D Dissertation, Université de Bourgogne, Dijon. (2005)

  31. Boresi, A.P., Chong, K., Lee, J.D.: Elasticity in Engineering Mechanics. Wiley, Hoboken, NJ (2010)

  32. Verchery, G.: Les invariants des tenseurs d’ordre 4 du type de l’élasticité. In Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, 93–104. Springer, Netherlands, (1982)

  33. Vannucci, P.: Plane anisotropy by the polar method. Meccanica 40(4–6), 437–54 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Vannucci, P.: Influence of invariant material parameters on the flexural optimal design of thin anisotropic laminates. Int. J. Mech. Sci. 51, 192–203 (2009)

    Article  MATH  Google Scholar 

  35. Vincenti, A.: Conception et optimisation de composites par méthode polaire et algorithmes génétiques. PhD Thesis, Université de Bourgogne, ISAT [in French] Nevers France (2002)

  36. Vannucci, P., Verchery, G.: Stiffness design of laminates using the polar method. Int. J. Solid. Struct. 38(50–51), 9281–9294 (2001)

    Article  MATH  Google Scholar 

  37. Vannucci, P., Riccardo, B., Bennati, S.: Exact optimal flexural design of laminates. Compos. Struct. 90(3), 337–345 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Masoud Kazemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, M. A new exact semi-analytical solution for buckling analysis of laminated plates under biaxial compression. Arch Appl Mech 85, 1667–1677 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: