Skip to main content
Log in

Nonlinear dynamic response and damage analysis for functionally graded metal shallow spherical shell under low-velocity impact

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The nonlinear dynamic response and damage evolution of functionally graded shallow spherical shell under low-velocity impact are investigated in this work. Basing on continuum damage theory, a damage constitutive relation is established for functionally graded material and the Kachanov damage evolution law is adopted to predict the damage propagation in the structure. A modified contact model suitable for non-homogenous material (functionally graded material) is applied to model the contact force in impacting process. The laminated modeling method is adopted to model the functionally graded shell with varying material constants along the thickness by dividing the shell to N plies with the constant material properties for each ply. With the established damage constitutive relations and nonlinear geometric relations of FGM shallow spherical shell with elastic modulus varying as a power-law function, the nonlinear motion equations of FGM shallow spherical under low-velocity impact have been obtained in the term of displacement functions. The problems are solved by using the orthogonal collocation point method, the Newmark method and the iterative method synthetically. Some numerical examples are carried out to validate present impacting model and the calculating methods, and parametrical analysis are presented to discuss the effects of the material properties, the geometrical size and impacting velocity on damage state and dynamic response of the structure when under low-velocity impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\({\varphi }, \theta , z\) :

Curvilinear coordinates along the meridional, circumferential and radial/thickness directions

\(u,v,w\) :

Displacement of plate

\(N_{\varphi }, N_\theta \) :

Result force

\(M_{\varphi }, M_\theta \) :

Resultant bending moment

\(Q_{\varphi } \) :

Out plane shear force

\(G\) :

Shear modulus

\(E_0 \) :

Elastic modulus of FGM plate on the central plane

\(E_1 \) :

Elastic modulus of impacting sphere

\(\delta \) :

Contact indentation

\(P\) :

Total contact force

\(\alpha \) :

Material index of FGM plate

\(p_\mathrm{c} \) :

Concentrated force in contact area

\(P(r_\mathrm{s} )\) :

Contact pressure in contact area

\(w_1 \) :

Deflection of the FGM substrate in contact model

\(w_2 \) :

Deflection on the isotropic impactor in contact model

\(\mathbf{D}\) :

Damage tensor

\(a\) :

Radius of impactor

\(R\) :

Radius of curvature of shallow spherical shell

\(\rho \) :

Density of the micro-damage on the \(i\)th surface

References

  1. Iha, D.K., Kant, T., Singh, R.K.: A critical review of recent research on functionally graded plates. Compos. Struct. 96, 833–849 (2013)

    Article  Google Scholar 

  2. Mantari, J.L., Soares, C.G.: A novel higher-order shear deformation theory with stretching effect for functionally graded plates. Compos. Part B 45, 268–281 (2013)

    Article  Google Scholar 

  3. Hamidi, A., Zidi, M., Houari, M.S.A., Tounsi, A.: A new four variable refined plate theory for bending response of functionally graded sandwich plates under thermomechanical loading. Compos. Part B (2012). doi:10.1016/jcompositesb201203021

  4. Qu, Y.G., Long, X.H., Yuan, G.Q., Meng, G.: A unified formulation for vibration analysis of functionally garded shells of revolution with arbitrary boundary conditions. Compos. Part B 50, 381–402 (2013)

    Article  Google Scholar 

  5. Liew, K.M., Zhao, X., Lee, Y.Y.: Postbuckling responses of functionally graded cylindrical shells under axial compression and thermal loads. Compos. Part B 43, 1621–1630 (2012)

    Article  Google Scholar 

  6. Na, K.S., Kim, J.H.: Three-dimensional thermal buckling analysis of functionally graded materials. Compos. Part B 35, 429–437 (2004)

    Article  Google Scholar 

  7. Shen, H.S.: Thermal buckling and postbuckling behavior of functionally garded carbon nanotube-reinforced composite cylindrical shells. Compos. Part B 43, 1030–1038 (2012)

    Article  Google Scholar 

  8. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., et al.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B 44, 657–674 (2013)

    Article  Google Scholar 

  9. Aboudi, J., Pindera, M.J., Arnold, S.M.: Higher-order theory for functionally graded materials. Compos. Part B 30, 777–832 (1999)

    Article  Google Scholar 

  10. Sills, L.B., Eliasi, R., Berlin, Y.: Modeling of functionally graded materials in dynamic analysis. Compos. Part B 33, 7–15 (2002)

    Article  Google Scholar 

  11. Jodaei, A., Jalal, M., Yas, M.H.: Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN. Compos. Part B 43, 340–353 (2012)

    Article  Google Scholar 

  12. Malekzadeh, P., Monajjemzadeh, S.M.: Dynamic response of functionally graded plates in thermal environment under moving load. Compos. Part B 45, 1521–1533 (2013)

    Article  Google Scholar 

  13. Sahmani, S., Ansari, R., Gholami, R., Darvizeh, A.: Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos. Part B 51, 44–53 (2013)

    Article  Google Scholar 

  14. Etemadi, E., Afaghi, K.A., Takaffoli, M.: 3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact. Compos. Struct. 89(1), 28–34 (2009)

    Article  Google Scholar 

  15. Apetre, N.A., Sankar, B.V., Ambur, D.R.: Low velocity impact response of sandwich beams with functionally graded core. Int. J. Solids Struct. 43(9), 2479–2496 (2006)

    Article  Google Scholar 

  16. Gong, S.W., Lam, K.Y., Reddy, J.N.: The elastic response of functionally graded cylindrical shells to low-velocity impact. Int. J. Impact Eng. 22(4), 397–417 (1999)

    Article  Google Scholar 

  17. Pantele, C.L., Liviu, L.: Low velocity impact on a functionally graded circular thin plate. In: Proceedings of ESDA (2006)

  18. Reid, L.T., Larson, A., Anthony, P.: Low velocity impact analysis of functionally graded circular plates. In: Proceedings of IMECE (2006)

  19. Shariyat, M., Jafari, R.: Nonlinear low-velocity impact response analysis of a radially preloaded two-directional-functionally graded circular plate: A refined contact stiffness approach. Compos. Part B 45, 981–994 (2013)

    Article  Google Scholar 

  20. Valarezo, A., Bolelli, G., Choi, W.B., Sampath, S., Cannillo, V., Lusvarghi, L., et al.: Damage tolerant functionally garded WC-Co/Stainless steel HVOF coatings. Surf. Coat. Technol. 205, 2197–2208 (2010)

    Article  Google Scholar 

  21. Kubair, D.V., Lakshmana, B.K.: Cohesive modeling of low-velocity impact damage in layered functionally graded beams. Mech. Res. Commun. 35, 104–114 (2008)

    Article  Google Scholar 

  22. Anandakumar, G., Li, N., Verma, A., Singh, P., Kim, J.H.: Thermal stress and probability of failure analysis of functionally garded solid oxide fuel cells. J. Power Sources 195, 6659–6670 (2010)

    Article  Google Scholar 

  23. Giannakopoulos, A.E., Pallot, P.: Two-dimensional contact analysis of elastic graded materials. J. Mech. Phys. Solids 48(8), 1597–1631 (2000)

    Article  Google Scholar 

  24. Giannakopoulos, A.E., Suresh, S.: Indentation of solids with gradients in elastic properties: part I. Point force. Int. J. Solids Struct. 34(19), 2357–2398 (1997)

    Article  Google Scholar 

  25. Mao, Y.Q., Fu, Y.M., Chen, C.P., Li, Y.L.: Nonlinear dynamic response for functionally graded shallow spherical shell under low velocity impact in thermal environment. Appl. Math. Model. 35(6), 2887–2900 (2011)

    Article  MathSciNet  Google Scholar 

  26. Xu, Z.L.: Elastic Mechanics. Higher Educational Press, Beijing (1998)

    Google Scholar 

  27. Voyiadjis, G.Z., Dorgan, R.J.: Framework using functional forms of hardening internal state variables in modeling elasto-plastic-damage behavior. Int. J. Plast. 23, 1826–1859 (2007)

    Article  Google Scholar 

  28. Voyiadjis, G.Z., Venson, A.R.: Experimental damage investigation of a SICTi aluminide metal matrix composite. Int. J. Damage Mech. 4, 338–361 (1995)

    Article  Google Scholar 

  29. Voyiadjis, G.Z., Venson, A.R., Kattan, P.I.: Experimental determination of damage parameters in uniaxially-loaded metal matrix composites using the overall approach. Int. J. Plast. 11, 895–926 (1995)

    Article  Google Scholar 

  30. Voyiadjis, G.Z., Kattan, P.I.: A plasticity-damage theory for large deformation of solids. Part I: theoretical formulation. Int. J. Eng. Sci. 30, 1089–1108 (1992)

    Article  Google Scholar 

  31. Voyiadjis, G.Z., Deliktas, B.: A coupled anisotropic damage model for the inelastic response of composite materials. Comput. Methods Appl. Mech. Eng. 183, 159–199 (2000)

    Article  Google Scholar 

  32. Voyiadjis, G.Z., Park, T.: Anisotropic damage effect tensor for the symmetrization of the effect stress tensor. J. Appl. Mech. 64, 106–110 (1997)

    Article  Google Scholar 

  33. Mao, Y.Q., Fu, Y.M., Tian, Y.P.: Nonlinear dynamic response and active control of piezoelastic laminated shallow spherical shells with damage. Int. J. Damage Mech. 21(6), 783–809 (2012)

    Article  Google Scholar 

  34. Kachanov, L.M.: Introduction to Continuum Damage Mechanics. Martinus Nijhoff Publishers, The Netherlands (1986)

    Book  Google Scholar 

  35. Ramirez, F., Heyliger, P.R., Pan, E.: Static analysis of functionally graded elastic anisotropic plates using a discrete layer approach. Compos. Part B 37, 10–20 (2006)

    Article  Google Scholar 

  36. Fu, Y.M., Mao, Y.Q., Tian, Y.P.: Damage analysis and dynamic response of elasto-plastic laminated composite shallow spherical shell under low velocity impact. Int. J. Solids Struct. 47(1), 126–137 (2010)

    Article  Google Scholar 

  37. Mao, Y.Q., Fu, Y.M., Ai, S.G., Fang, D.N.: Interfacial damage analysis of shallow spherical shell with FGM coating under low velocity impact. Int. J. Mech. Sci. 71, 30–40 (2013)

    Article  Google Scholar 

  38. Mao, Y.Q., Ai, S.G., Fang, D.N., Fu, Y.M., Chen, C.P.: Elasto-plastic analysis of micro FGM beam basing on mechanism-based strain gradient plasticity theory. Compos. Sturct. 101, 168–179 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by the Natural Science Foundation of China (No. 11302004); the Equipment research foundation (No. 2012YQ03007502) and Natural Science Foundation of China (No. 11072076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Q. Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, Y.Q., Ai, S.G., Chen, C.P. et al. Nonlinear dynamic response and damage analysis for functionally graded metal shallow spherical shell under low-velocity impact. Arch Appl Mech 85, 1627–1647 (2015). https://doi.org/10.1007/s00419-015-1009-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1009-4

Keywords

Navigation