Skip to main content
Log in

Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The mechanical behavior of automotive dual-phase steel (DP) is modeled by two different approaches: with a full-field representative volume element (RVE) and with a mean-field model. In the first part of this work, the full-field RVE is constituted by a crystal plasticity-based ferrite matrix with von Mises-type martensite inclusions. To isolate the martensite influence, the full-field DP results were compared to a full-field comparison RVE. In the comparison RVE, all martensite inclusions were replaced by a phase that exhibits the average ferrite behavior. A higher relative martensite grain boundary coverage facilitates an increased average dislocation density after quenching. However, for uniaxial deformations above ∼10%, the grain size-dependent relation reverses and exhibits slowed-down hardening. In the second part, we incorporate the main findings from the full-field simulations into a nonlinear mean-field model of Hashin–Shtrikman type. The dislocation density production parameter and the saturated dislocation density are modeled based on grain size and martensite coverage. The comparison of both approaches shows good agreement for both the overall and constituent averaged behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Azuma M., Goutianos S., Hansen N., Winther G., Huang X.: Effect of hardness of martensite and ferrite on void formation in dual phase steel. Mater. Sci. Technol. 28(9), 1092–1100 (2012)

    Article  Google Scholar 

  2. Bachmann, F., Hielscher, R., Schaeben, H.: Grain detection from 2d and 3d EBSD data-specification of the MTEX algorithm. Ultramicroscopy 111(12), 1720–33 (2011)

  3. Balliger, N., Gladman, T.: Work hardening of dual-phase steels. Metal Sci. 15, 1–3 (1981)

  4. Berbenni S., Favier V., Berveiller M.: Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plast. 23(1), 114–142 (2007)

    Article  MATH  Google Scholar 

  5. Böhlke T., Neumann R., Rieger F.: Two-scale modeling of grain size and phase transformation effects. Steel Res. Int. 85(6), 1018–1034 (2014)

    Article  Google Scholar 

  6. Calcagnotto M., Ponge D., Demir E., Raabe D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng.: A 527(10–11), 2738–2746 (2010)

    Article  Google Scholar 

  7. Choi, S.-H., Kim, E., Woo, W., Han, S., Kwak, J.: The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int. J. Plast. 45, 85–102 (2013)

  8. Danielsson M., Parks D.M., Boyce M.C.: Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers. J. Mech. Phys. Solids 55(3), 533–561 (2007)

    Article  MATH  Google Scholar 

  9. Dederichs P.H., Zeller R.: Variational treatment of the elastic constants of disordered materials. Zeitschrift fuer Physik 259(2), 103–116 (1973)

    Article  Google Scholar 

  10. Delincé M., Bréchet Y., Embury J., Geers M., Jacques P., Pardoen T.: Structure-property optimization of ultrafine-grained dual-phase steels using a microstructure-based strain hardening model. Acta Materialia 55(7), 2337–2350 (2007)

    Article  Google Scholar 

  11. Dillien S., Seefeldt M., Allain S., Bouaziz O., Van Houtte P.: EBSD study of the substructure development with cold deformation of dual phase steel. Mater. Sci. Eng.: A 527(4–5), 947–953 (2010)

    Article  Google Scholar 

  12. Erdogan M., Tekeli S.: The effect of martensite particle size on tensile fracture of surface-carburised AISI 8620 steel with dual phase core microstructure. Mater. Des. 23(7), 597–604 (2002)

    Article  Google Scholar 

  13. Gao S., Chen M., Chen S., Kamikawa N., Shibata A., Tsuji N.: Yielding behavior and its effect on uniform elongation of fine grained IF steel. Mater. Trans. 55(1), 73–77 (2014)

    Article  Google Scholar 

  14. Gardey B., Bouvier S., Bacroix B.: Correlation between the macroscopic behavior and the microstructural evolutions during large plastic deformation of a dual-phase steel. Metall. Mater. Trans. A 36, 2937–2945 (2005)

    Article  Google Scholar 

  15. Ghassemi-Armaki H., Maaß R., Bhat S., Sriram S., Greer J., Kumar K.: Deformation response of ferrite and martensite in a dual-phase steel. Acta Materialia 62, 197–211 (2014)

    Article  Google Scholar 

  16. Jiang Z., Guan Z., Lian J., Mechanics F.: Effects of microstructural variables on the deformation behaviour of dual-phase steel. Mater. Sci. Eng. A 190(1–2), 55–64 (1995)

    Article  Google Scholar 

  17. Jöchen, K.: Homogenization of the Linear and Non-linear Mechanical Behavior of Polycrystals. Karlsruher Institut für Technologie (KIT), KIT Scientific Publishing. http://uvka.ubka.uni-karlsruhe.de/shop/download/1000032289 (2013)

  18. Jöchen K., Böhlke T.: Prediction of texture evolution in rolled sheet metals by using homogenization schemes. Key Eng. Mater. 504(506), 649–654 (2012)

    Article  Google Scholar 

  19. Kadkhodapour J., Schmauder S., Raabe D., Ziaei-Rad S., Weber U., Calcagnotto M.: Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels. Acta Materialia 59(11), 4387–4394 (2011)

    Article  Google Scholar 

  20. Kang J., Ososkov Y., Embury J., Wilkinson D.: Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scripta Materialia 56(11), 999–1002 (2007)

    Article  Google Scholar 

  21. Kapp M., Hebesberger T., Kolednik O.: A micro-level strain analysis of a high-strength dual-phase steel. Int. J. Mater. Res. (formerly Zeitschrift fuer Metallkunde) 102(06), 687–691 (2011)

    Article  Google Scholar 

  22. Kim S.A., Johnson W.L.: Elastic constants and internal friction of martensitic steel, ferritic–pearlitic steel, and α-iron. Mater. Sci. Eng.: A 452(453), 633–639 (2007)

    Article  Google Scholar 

  23. Kocks U.F., Mecking H.: Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)

    Article  Google Scholar 

  24. Koistinen D.P., Marburger R.E.: A general equation prescribing the extent of the austenite–martensite transformation in pure iron–carbon alloys and plain carbon steels. Acta Metallurgica 7(1), 59–60 (1959)

    Article  Google Scholar 

  25. Korzekwa D., Matlock D., Procedure E.: Dislocation substructure as a function of strain in a dual-phase steel. Metall. Mater. 15, 1221–1228 (1984)

    Google Scholar 

  26. Kuziak R., Kawalla R., Waengler S.: Advanced high strength steels for automotive industry. Arch. Civil Mech. Eng. 8(2), 103–117 (2008)

    Article  Google Scholar 

  27. Larour P., Bäumer A., Dahmen K., Bleck W.: Influence of strain rate, temperature, plastic strain, and microstructure on the strain rate sensitivity of automotive sheet steels. Steel Res. Int. 84(5), 426–442 (2013)

    Article  Google Scholar 

  28. Liedl U., Traint S., Werner E.: An unexpected feature of the stress–strain diagram of dual-phase steel. Comput. Mater. Sci. 25(1), 122–128 (2002)

    Article  Google Scholar 

  29. Mecking H.: Work hardening of single-phase polycrystals. In: Buschow, K.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., Mahajan, S. (eds.) Encyclopedia of Materials—Science and Technology, pp. 9785–9795. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  30. Nadeau J., Ferrari M.: On optimal zeroth-order bounds with application to Hashin–Shtrikman bounds and anisotropy parameters. Int. J. Solids Struct. 38(44–45), 7945–7965 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Park K., Nishiyama M., Nakada N., Tsuchiyama T., Takaki S.: Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel. Mater. Sci. Eng.: A 604, 135–141 (2014)

    Article  Google Scholar 

  32. Ponte Castaneda, P., Suquet, P., Castaneda, P.P.: Nonlinear composites. In: van der Giessen E., Wu T.Y. (Eds.) Advances in Applied Mechanics, vol. 34 of Advances in Applied Mechanics. Elsevier, Amsterdam, p. 171.302 (1997)

  33. Raeisinia B., Sinclair C.: A representative grain size for the mechanical response of polycrystals. Mater. Sci. Eng.: A 525(1–2), 78–82 (2009)

    Article  Google Scholar 

  34. Ramazani, A., Mukherjee, K., Quade, H., Prahl, U., Bleck, W.: Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater. Sci. Eng.: A 560, 129–139 (2013a)

  35. Ramazani, A., Mukherjee, K., Schwedt, A., Goravanchi, P., Prahl, U., Bleck, W.: Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int. J. Plast. 43, 128–152 (2013b)

  36. Rauch E.F., Gracio J.J., Barlat F., Vincze G.: Modelling the plastic behaviour of metals under complex loading conditions. Model. Simul. Mater. Sci. Eng. 19(3), 035009 (2011)

    Article  Google Scholar 

  37. Resende T.C., Bouvier S.: Dislocation-based model for the prediction of the behavior of bcc materials—grain size and strain path effects. Int. J. Plast. 47, 29–48 (2013)

    Article  Google Scholar 

  38. Rodriguez R.-M., Gutiérrez I.: Unified formulation to predict the tensile curves of steels with different microstructures. Mater. Sci. Forum 426(432), 4525–4530 (2003)

    Article  Google Scholar 

  39. Schreijäg, S.: Microstructure and Mechanical Behavior of Deep Drawing DC04 Steel at Different Length Scales. Karlsruher Institut für Technologie (KIT), KIT Scientific Publishing, Karlsruhe (2013). http://uvka.ubka.uni-karlsruhe.de/shop/download/1000032165

  40. Sodjit S., Uthaisangsuk V.: Microstructure based prediction of strain hardening behavior of dual phase steels. Mater. Des. 41, 370–379 (2012)

    Article  Google Scholar 

  41. Tasan C.C., Hoefnagels J.J., Geers M.M.: Microstructural banding effects clarified through micrographic digital image correlation. Scripta Materialia 62(11), 835–838 (2010)

    Article  Google Scholar 

  42. Thomser, C., Uthaisangsuk, V., Bleck, W.: Influence of martensite distribution on the mechanical properties of dual phase steels: experiments and simulation. Steel Res. Int. 80(8), 582–587 (2009)

  43. Tsipouridis P., Koll L., Krempaszky C., Werner E.: On the strength of grain and phase boundaries in ferritic-martensitic dual-phase steels. Int. J. Mater. Res. (formerly Zeitschrift fuer Metallkunde) 102(06), 674–686 (2011)

    Article  Google Scholar 

  44. Wasilkowska A., Petrov R., Kestens L., Werner E.A., Krempaszky C., Traint S., Pichler A.: Microstructure and texture changes in a low-alloyed TRIP-aided steel induced by small plastic deformation. ISIJ Int. 46(2), 302–309 (2006)

    Article  Google Scholar 

  45. Wenk, M., Schreijäg, S.: Personal Communication (2013)

  46. Willis J.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(3), 185–202 (1977)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Rieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieger, F., Böhlke, T. Microstructure based prediction and homogenization of the strain hardening behavior of dual-phase steel. Arch Appl Mech 85, 1439–1458 (2015). https://doi.org/10.1007/s00419-014-0974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0974-3

Keywords

Navigation