Skip to main content
Log in

Generalized fractional derivatives and their applications to mechanical systems

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

New fractional derivatives, termed henceforth generalized fractional derivatives (GFDs), are introduced. Their definition is based on the concept that fractional derivatives (FDs) interpolate the integer- order derivatives. This idea generates infinite classes of FDs. The new FDs provide, beside the fractional order, any number of free parameters to better calibrate the response of a physical system or procedure. Their usefulness and consequences are subject of further investigation. Like the Caputo FD, the GFDs allow the application of initial conditions having direct physical significance. A numerical method is also developed for the solution of differential equations involving GFDs. Mechanical systems including fractional oscillators, viscoelastic plane bodies and plates described by such equations are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atanackovic T.M., Pilipovic S., Stankovic B., Zorica D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, London (2014)

    Book  Google Scholar 

  2. Atanackovic T.M., Pilipovic S., Stankovic B., Zorica D.: Fractional Calculus with Applications in Mechanics: Impact and Variational Principles. Wiley, London (2014)

    Book  Google Scholar 

  3. Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)

    Book  MATH  Google Scholar 

  4. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  5. Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Capelas de Oliveira, E., Machado, J.T.: A review of definitions for fractional derivatives and integrals. Math. Probl. Eng. 2014 (2014). doi:10.1155/2014/23845

  7. Caputo M.: Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Article  Google Scholar 

  8. Katsikadelis J.T.: Numerical solution of multi-term fractional differential equations. ZAMM, Zeitschrift für Angewandte Mathematik und Mechanik 89(7), 593–608 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Katsikadelis J.T.: The analog equation method. A boundary-only integral equation method for nonlinear static and dynamic problems in general bodies. Int. J. Theor. Appl. Mech. 27, 13–38 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Schmidt A., Gaul L.: Finite element formulation of viscoelastic constitutive equations using fractional time derivatives. Nonlinear Dyn. 29(1-4), 37–55 (2002)

    Article  MATH  Google Scholar 

  11. Nerantzaki M.S., Babouskos N.G.: Vibrations of inhomogeneous anisotropic viscoelastic bodies described with fractional derivative models. Eng. Anal. Bound. Elem. 6(12), 1894–1907 (2012). doi:10.1016/j.enganabound.2012.07.003

    Article  MathSciNet  Google Scholar 

  12. Atanackovic T.M.: A modified zener model of a viscoelastic body. Contin. Mech. Thermodyn. 14, 137–148 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Atanackovic T.M., Stankovic B.: Dynamics of a viscoelastic rod of fractional derivative type. ZAMM, Zeitschrift für Angewandte Mathematik und Mechanik 82, 377–386 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Katsikadelis J.T.: The BEM for numerical solution of partial fractional differential equations. Comput. Math. Appl. 62, 891–901 (2011). doi:10.1016/j.camwa.2011.04.001

    Article  MATH  MathSciNet  Google Scholar 

  15. Katsikadelis J.T.: The Boundary Element Method for Plate Analysis. Academic Press, Elsevier, Oxford (2014)

    Google Scholar 

  16. Babouskos N.G., Katsikadelis J.T.: Nonlinear vibrations of viscoelastic plates of fractional derivative type: an AEM solution. Open Mech. J. 4, 8–20 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Katsikadelis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katsikadelis, J.T. Generalized fractional derivatives and their applications to mechanical systems. Arch Appl Mech 85, 1307–1320 (2015). https://doi.org/10.1007/s00419-014-0969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0969-0

Keywords

Navigation