Mechanical properties of locally oxidized graphene electrodes

Abstract

Graphene has many outstanding mechanical, electronic and optical properties, which makes it an ideal material for future transparent-flexible electronic devices. In such applications, graphene is exposed to atmospheric conditions and must withstand high mechanical stresses without forming cracks or discontinuities, so that the electrical current can flow along it. Although graphene is a very resistant material, local oxidation of graphene may alter its pristine structure, leading to a lower mechanical strength and high risk of fracture. Here, we analyze the mechanical properties of graphene in oxidative environments using a wide range of nanoscale tools and performing accelerated oxidation tests. Our experiments indicate that local oxidation of graphene sheets may alter its mechanical properties, leading to soft locations that easier to indent and increase the frictional coefficient of the sheets.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of Graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  2. 2

    Li X.L., Zhang G.Y., Bai X.D., Sun X.M., Wang X.R., Wang E., Dai H.J.: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)

    Article  Google Scholar 

  3. 3

    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. 4

    Lanza M., Wang Y., Bayerl A., Gao T., Porti M., Nafria M., Liang H., Jing G., Zhang Y., Tong H., Duan H.: Tuning graphene morphology by substrate towards wrinkle-free devices: experiment and simulation. J. Appl. Phys. 113, 104301 (2013)

    Article  Google Scholar 

  5. 5

    Peres N.M.R.: Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673–2700 (2010)

    Article  Google Scholar 

  6. 6

    Lanza M., Wang Y., Bayerl A., Gao T., Porti M., Nafria Zhou Y., Jing G., Liu Z., Zhang Y., Dapeng Y., Duan H.: Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 6(7), 485–495 (2013)

    Article  Google Scholar 

  7. 7

    Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K.: Aroadmap for graphene. Nature 490, 192–200 (2012)

    Article  Google Scholar 

  8. 8

    Choi D., Choi M.Y., Choi W.M., Shin H.J., Park H.K., Seo J.S., Park J., Yoon S.M., Chae S.J., Lee Y.H., Kim S.W., Choi J.Y., Lee S.Y., Kim J.M.: Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22, 2187–2192 (2010)

    Article  Google Scholar 

  9. 9

    Basu P.K., Indukuri D., Keshavan S., Navratna V., Vanjari S.R.K., Raghavan S., Bhat N.: Graphene based E. coli sensor on flexible acetate sheet. Sens. Actuators B Chem. 190, 342–347 (2014)

    Article  Google Scholar 

  10. 10

    Li X.S., Carl W., Magnuson Venugopal A., Tromp R.M., Hannon J.B., Vogel E.M., Colombo , Ruoff R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 816–2819 (2011)

    Google Scholar 

  11. 11

    Chen S., Brown L., Levendorf M., Cai S., Ju S.Y., Edgeworth J., Li X., Magnuson C.W., Velamakanni A., Piner R.D., Kang J., Park J., Ruoff R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano. 5(2), 1321–1327 (2011)

    Article  Google Scholar 

  12. 12

    Li X.S., Cai W.W., An J.H., Kim S., Nah J., Yang D.X., Piner R.D., Velamakanni A., Jung I., Tutuc E., Banerjee S.K., Colombo L., Ruoff R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  Google Scholar 

  13. 13

    Duong D.L., Han G.H., Lee S.M., Gunes F., Kim E.S., Kim S.T., Kim H., Ta Q.H., So K.P., Yoon S.J., Chae S.J., Jo J.W., Park M.H., Chae S.H., Lim S.C., Choi J.Y., Lee Y.H.: Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012)

    Article  Google Scholar 

  14. 14

    Kang D., Kwon J.Y., Cho H., Sim J.H., Hwang H.S., Kim C.S.: Oxidation resistance of Iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano. 6(9), 7763–7769 (2012)

    Article  Google Scholar 

  15. 15

    Nilsson L., Andersen M., Balog R., Laegsgaard E., Hofmann P., Besenbacher F., Hammer B., Stensgaard I., hornekaer L.: Graphene coatings: probing the limits of the one atom thick protection layer. ACS Nano. 6(11), 10258–10266 (2012)

    Article  Google Scholar 

  16. 16

    Ahmad M., Han S.A., Tien D.H., Jung J., Seo Y.: Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 110, 054307 (2011)

    Article  Google Scholar 

  17. 17

    Kwon S., Chung H. J., Seo S., Park J.Y.: Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 44, 768–771 (2012)

    Article  Google Scholar 

  18. 18

    Orofeo C.M., Hibino H., Kawahara K., Ogawa Y., Tsuji M., Ikeda K.I., Mizuno S., Ago H.: Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50, 2189–2196 (2012)

    Article  Google Scholar 

  19. 19

    Ismach A., Druzgalski C., Penwell S., Schwartzberg A., Zheng M., Javey A., Bokor J., Zhang Y.G.: Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010)

    Article  Google Scholar 

  20. 20

    Han G.H., Günes F., Bae J.J., Kim E.S., Chae S.J., Shin H.J., Choi J.Y., Pribat D., Lee Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011)

    Article  Google Scholar 

  21. 21

    Robertson A.W., Warner J.H.: Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 11, 1182–1189 (2011)

    Article  Google Scholar 

  22. 22

    Lanza M., Gao T., Yin Z.X., Zhang Y.F., Liu Z.F., Tong Y.Z., Shen Z.Y., Duan H.L.: Nanogap based graphene coated AFM tips with high spatial resolution conductivity and durability. Nanoscale 5, 10816–10823 (2013)

    Article  Google Scholar 

  23. 23

    Lanza M., Bayerl A., Gao T., Porti M., Nafria M., Jing G., Zhang Y., Liu Z., Duan H.: Graphene-coated Atomic Force Microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 25, 1440–1444 (2013)

    Article  Google Scholar 

  24. 24

    Zhang Y. F., Gao T., Gao Y.B., Xie S.B., Ji Q.Q., Yan K., Peng H.: Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano. 5(5), 4014–4022 (2011)

    Article  Google Scholar 

  25. 25

    Regan W., Alem N., Aleman B., Geng B., Girit Caglar., Maserati L., Wang F., Crommie M., Zettl A.: A direct transfer of layer-area Graphene. Appl. Phys. Lett. 96, 113102 (2010)

    Article  Google Scholar 

  26. 26

    Mattevi C., Kim H., Chhowalla M.: A review of chemical vapour deposition of graphene oncopper. J. Mater. Chem. 21, 3324–3334 (2011)

    Article  Google Scholar 

  27. 27

    Zivkovic, J.: AFM force spectroscopy of viral systems. PhD disertation Ipskamp Drukkers. 978-90-9027386-0 (2013)

  28. 28

    Bhushan, B.: Springer Handbook of Nanotechnology. Springer, New York (2004)

  29. 29

    Cappella B., Dietler G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–3 (1999)

    Article  Google Scholar 

  30. 30

    Steven P., Koenig Narasimha G., Boddeti Martin L., DunnScott B.J.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

    Article  Google Scholar 

  31. 31

    Shin Y.J., Stromberg R., Nay R., Huang H., Wee A.T.S., Yang H., Bhatia C.S.: Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49, 4070–4073 (2011)

    Article  Google Scholar 

  32. 32

    Kremmer, S., Peissl, S., Teichert, C., Kuchar, F.: Proceedings of the 28th International Symposium of Testing and Failure Analysis. EDFAS 473–482 (2002)

  33. 33

    Kremmer S., Peissl S., Teichert C., Kuchar F., Hofer H.: Modification and characterization of thin silicon gate oxides using conductive atomic force microscopy. Mater. Sci. Eng. 102, 88–93 (2003)

    Article  Google Scholar 

  34. 34

    Shi X.H., Zhao Y.P.: Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 55–68 (2004)

    Article  Google Scholar 

  35. 35

    Olbrich A.: Characterisation of thin dielectrics by means of modified atomic force microscopy. PhD thesis University of Regensburg Regensburg Germany. (1999)

  36. 36

    Frammelsberger W., Benstetter G., Kiely J., Stamp R.: C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. App. Surf. Sci. 253, 3615–3626 (2007)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Huiling Duan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hui, F., Shi, Y., Ji, Y. et al. Mechanical properties of locally oxidized graphene electrodes. Arch Appl Mech 85, 339–345 (2015). https://doi.org/10.1007/s00419-014-0957-4

Download citation

Keywords

  • Graphene
  • Local oxidation
  • Mechanical properties
  • Hillock
  • Plateau