Archive of Applied Mechanics

, Volume 85, Issue 3, pp 339–345 | Cite as

Mechanical properties of locally oxidized graphene electrodes

  • Fei Hui
  • Yuanyuan Shi
  • Yanfeng Ji
  • Mario Lanza
  • Huiling Duan


Graphene has many outstanding mechanical, electronic and optical properties, which makes it an ideal material for future transparent-flexible electronic devices. In such applications, graphene is exposed to atmospheric conditions and must withstand high mechanical stresses without forming cracks or discontinuities, so that the electrical current can flow along it. Although graphene is a very resistant material, local oxidation of graphene may alter its pristine structure, leading to a lower mechanical strength and high risk of fracture. Here, we analyze the mechanical properties of graphene in oxidative environments using a wide range of nanoscale tools and performing accelerated oxidation tests. Our experiments indicate that local oxidation of graphene sheets may alter its mechanical properties, leading to soft locations that easier to indent and increase the frictional coefficient of the sheets.


Graphene Local oxidation Mechanical properties Hillock Plateau 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castro Neto A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K.: The electronic properties of Graphene. Rev. Mod. Phys. 81, 109–162 (2009)CrossRefGoogle Scholar
  2. 2.
    Li X.L., Zhang G.Y., Bai X.D., Sun X.M., Wang X.R., Wang E., Dai H.J.: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008)CrossRefGoogle Scholar
  3. 3.
    Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  4. 4.
    Lanza M., Wang Y., Bayerl A., Gao T., Porti M., Nafria M., Liang H., Jing G., Zhang Y., Tong H., Duan H.: Tuning graphene morphology by substrate towards wrinkle-free devices: experiment and simulation. J. Appl. Phys. 113, 104301 (2013)CrossRefGoogle Scholar
  5. 5.
    Peres N.M.R.: Colloquium: the transport properties of graphene: an introduction. Rev. Mod. Phys. 82, 2673–2700 (2010)CrossRefGoogle Scholar
  6. 6.
    Lanza M., Wang Y., Bayerl A., Gao T., Porti M., Nafria Zhou Y., Jing G., Liu Z., Zhang Y., Dapeng Y., Duan H.: Electrical and mechanical performance of graphene sheets exposed to oxidative environments. Nano Res. 6(7), 485–495 (2013)CrossRefGoogle Scholar
  7. 7.
    Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K.: Aroadmap for graphene. Nature 490, 192–200 (2012)CrossRefGoogle Scholar
  8. 8.
    Choi D., Choi M.Y., Choi W.M., Shin H.J., Park H.K., Seo J.S., Park J., Yoon S.M., Chae S.J., Lee Y.H., Kim S.W., Choi J.Y., Lee S.Y., Kim J.M.: Fully rollable transparent nanogenerators based on graphene electrodes. Adv. Mater. 22, 2187–2192 (2010)CrossRefGoogle Scholar
  9. 9.
    Basu P.K., Indukuri D., Keshavan S., Navratna V., Vanjari S.R.K., Raghavan S., Bhat N.: Graphene based E. coli sensor on flexible acetate sheet. Sens. Actuators B Chem. 190, 342–347 (2014)CrossRefGoogle Scholar
  10. 10.
    Li X.S., Carl W., Magnuson Venugopal A., Tromp R.M., Hannon J.B., Vogel E.M., Colombo , Ruoff R.S.: Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 133, 816–2819 (2011)Google Scholar
  11. 11.
    Chen S., Brown L., Levendorf M., Cai S., Ju S.Y., Edgeworth J., Li X., Magnuson C.W., Velamakanni A., Piner R.D., Kang J., Park J., Ruoff R.S.: Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano. 5(2), 1321–1327 (2011)CrossRefGoogle Scholar
  12. 12.
    Li X.S., Cai W.W., An J.H., Kim S., Nah J., Yang D.X., Piner R.D., Velamakanni A., Jung I., Tutuc E., Banerjee S.K., Colombo L., Ruoff R.S.: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)CrossRefGoogle Scholar
  13. 13.
    Duong D.L., Han G.H., Lee S.M., Gunes F., Kim E.S., Kim S.T., Kim H., Ta Q.H., So K.P., Yoon S.J., Chae S.J., Jo J.W., Park M.H., Chae S.H., Lim S.C., Choi J.Y., Lee Y.H.: Probing graphene grain boundaries with optical microscopy. Nature 490, 235–239 (2012)CrossRefGoogle Scholar
  14. 14.
    Kang D., Kwon J.Y., Cho H., Sim J.H., Hwang H.S., Kim C.S.: Oxidation resistance of Iron and copper foils coated with reduced graphene oxide multilayers. ACS Nano. 6(9), 7763–7769 (2012)CrossRefGoogle Scholar
  15. 15.
    Nilsson L., Andersen M., Balog R., Laegsgaard E., Hofmann P., Besenbacher F., Hammer B., Stensgaard I., hornekaer L.: Graphene coatings: probing the limits of the one atom thick protection layer. ACS Nano. 6(11), 10258–10266 (2012)CrossRefGoogle Scholar
  16. 16.
    Ahmad M., Han S.A., Tien D.H., Jung J., Seo Y.: Local conductance measurement of graphene layer using conductive atomic force microscopy. J. Appl. Phys. 110, 054307 (2011)CrossRefGoogle Scholar
  17. 17.
    Kwon S., Chung H. J., Seo S., Park J.Y.: Domain structures of single layer graphene imaged with conductive probe atomic force microscopy. Surf. Interface Anal. 44, 768–771 (2012)CrossRefGoogle Scholar
  18. 18.
    Orofeo C.M., Hibino H., Kawahara K., Ogawa Y., Tsuji M., Ikeda K.I., Mizuno S., Ago H.: Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 50, 2189–2196 (2012)CrossRefGoogle Scholar
  19. 19.
    Ismach A., Druzgalski C., Penwell S., Schwartzberg A., Zheng M., Javey A., Bokor J., Zhang Y.G.: Direct chemical vapor deposition of graphene on dielectric surfaces. Nano Lett. 10, 1542–1548 (2010)CrossRefGoogle Scholar
  20. 20.
    Han G.H., Günes F., Bae J.J., Kim E.S., Chae S.J., Shin H.J., Choi J.Y., Pribat D., Lee Y.H.: Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett. 11, 4144–4148 (2011)CrossRefGoogle Scholar
  21. 21.
    Robertson A.W., Warner J.H.: Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett. 11, 1182–1189 (2011)CrossRefGoogle Scholar
  22. 22.
    Lanza M., Gao T., Yin Z.X., Zhang Y.F., Liu Z.F., Tong Y.Z., Shen Z.Y., Duan H.L.: Nanogap based graphene coated AFM tips with high spatial resolution conductivity and durability. Nanoscale 5, 10816–10823 (2013)CrossRefGoogle Scholar
  23. 23.
    Lanza M., Bayerl A., Gao T., Porti M., Nafria M., Jing G., Zhang Y., Liu Z., Duan H.: Graphene-coated Atomic Force Microscope tips for reliable nanoscale electrical characterization. Adv. Mater. 25, 1440–1444 (2013)CrossRefGoogle Scholar
  24. 24.
    Zhang Y. F., Gao T., Gao Y.B., Xie S.B., Ji Q.Q., Yan K., Peng H.: Defect-like structures of graphene on copper foils for strain relief investigated by high-resolution scanning tunneling microscopy. ACS Nano. 5(5), 4014–4022 (2011)CrossRefGoogle Scholar
  25. 25.
    Regan W., Alem N., Aleman B., Geng B., Girit Caglar., Maserati L., Wang F., Crommie M., Zettl A.: A direct transfer of layer-area Graphene. Appl. Phys. Lett. 96, 113102 (2010)CrossRefGoogle Scholar
  26. 26.
    Mattevi C., Kim H., Chhowalla M.: A review of chemical vapour deposition of graphene oncopper. J. Mater. Chem. 21, 3324–3334 (2011)CrossRefGoogle Scholar
  27. 27.
    Zivkovic, J.: AFM force spectroscopy of viral systems. PhD disertation Ipskamp Drukkers. 978-90-9027386-0 (2013)Google Scholar
  28. 28.
    Bhushan, B.: Springer Handbook of Nanotechnology. Springer, New York (2004)Google Scholar
  29. 29.
    Cappella B., Dietler G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–3 (1999)CrossRefGoogle Scholar
  30. 30.
    Steven P., Koenig Narasimha G., Boddeti Martin L., DunnScott B.J.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)CrossRefGoogle Scholar
  31. 31.
    Shin Y.J., Stromberg R., Nay R., Huang H., Wee A.T.S., Yang H., Bhatia C.S.: Frictional characteristics of exfoliated and epitaxial graphene. Carbon 49, 4070–4073 (2011)CrossRefGoogle Scholar
  32. 32.
    Kremmer, S., Peissl, S., Teichert, C., Kuchar, F.: Proceedings of the 28th International Symposium of Testing and Failure Analysis. EDFAS 473–482 (2002)Google Scholar
  33. 33.
    Kremmer S., Peissl S., Teichert C., Kuchar F., Hofer H.: Modification and characterization of thin silicon gate oxides using conductive atomic force microscopy. Mater. Sci. Eng. 102, 88–93 (2003)CrossRefGoogle Scholar
  34. 34.
    Shi X.H., Zhao Y.P.: Comparison of various adhesion contact theories and the influence of dimensionless load parameter. J. Adhes. Sci. Technol. 18, 55–68 (2004)CrossRefGoogle Scholar
  35. 35.
    Olbrich A.: Characterisation of thin dielectrics by means of modified atomic force microscopy. PhD thesis University of Regensburg Regensburg Germany. (1999)Google Scholar
  36. 36.
    Frammelsberger W., Benstetter G., Kiely J., Stamp R.: C-AFM-based thickness determination of thin and ultra-thin SiO2 films by use of different conductive-coated probe tips. App. Surf. Sci. 253, 3615–3626 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Fei Hui
    • 1
  • Yuanyuan Shi
    • 1
  • Yanfeng Ji
    • 1
  • Mario Lanza
    • 1
  • Huiling Duan
    • 2
  1. 1.Institute of Functional Nano and Soft MaterialsSoochow UniversitySuzhouChina
  2. 2.State Key Laboratory for Turbulence and Complex System, CAPT, Department of Mechanics and Engineering Science, College of EngineeringPeking UniversityBeijingChina

Personalised recommendations