Skip to main content
Log in

Analytic and numeric solution of a magneto-mechanical inclusion problem

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, exact solutions for the primary field variables and their first derivatives are derived for the coupled magneto-mechanical problem of a circular inclusion embedded in an infinite surrounding. Both material domains possess linear and isotropic material properties. The assumed planarity of all fields enables and recommends the description with analytic functions depending on the complex variable z. The well-known technique of a complex stress potential satisfying the bipotential equation is used and adapted to coupled magneto-mechanical problems. The provided analytic expressions are of special interest for the validation of numeric solutions of coupled magneto-mechanical boundary value problems. In this contribution, they are applied to analyze the convergence behavior of an extended finite element formulation for coupled magneto-mechanical problems. Based on the analytic results, proper boundary conditions are prescribed to the numeric model. The convergence in terms of polynomial degree and mesh refinement of the implemented element formulation is proved by computing the L2 and the energy norm which requires the knowledge of the exact solution. The generality of the proposed formulas allows for the deduction of some other kind of problems, e.g., the pure mechanical displacement and stress field of a bimaterial setting or the stress concentration around a circular hole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardzokas D.I., Filshtinsky M.L., Filshtinsky L.A.: Mathematical Methods in Electro-Magneto-Elasticity. Springer, Berlin (2007)

    MATH  Google Scholar 

  2. Belytschko T., Moës N., Usui S., Parimi C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50(4), 993–1013 (2001)

    Article  MATH  Google Scholar 

  3. Bender P., Tschöpe A., Birringer R.: Determination of the shear modulus of gelatine hydrogels by magnetization measurements using dispersed nickel nanorods as mechanical probes. J. Magn. Magn. Mater. 346, 152–160 (2013)

    Article  Google Scholar 

  4. Bustamante, R.: Mathematical modelling of non-linear magneto- and electro-active rubber-like materials. Ph.D. thesis, University of Glasgow (2007)

  5. Cheng K.W., Fries T.P.: Higher-order XFEM for curved strong and weak discontinuities. Int. J. Numer. Methods Eng. 82(5), 564–590 (2010)

    MATH  MathSciNet  Google Scholar 

  6. Dorfmann A., Ogden R.W.: Nonlinear magnetoelastic deformations. Q. J. Mech. Appl. Math. 57(4), 599–622 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dorfmann A., Ogden R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer, New York (2014)

    Book  MATH  Google Scholar 

  8. Engel A., Friedrichs R.: On the electromagnetic force on a polarizable body. Am. J. Phys. 70(4), 428–432 (2002)

    Article  Google Scholar 

  9. Eringen A.C., Maugin G.A.: Electrodynamics of Continua I. Springer, New York (1990)

    Book  Google Scholar 

  10. Fish J., Belytschko T.: A First Course in Finite Elements. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  11. Galipeau E., Ponte Castañeda P.: A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations. J. Mech. Phys. Solids 61(4), 1065–1090 (2013)

    Article  MathSciNet  Google Scholar 

  12. Galipeau E., Ponte Castañeda P.: Giant field-induced strains in magnetoactive elastomer composites. Proc. R. Soc. Lond. A Math. 469(2158), 20130385 (2013)

    Article  Google Scholar 

  13. de Groot S.R., Suttorp L.G.: Foundations of Electrodynamics. North-Holland Publishing Company, Amsterdam (1972)

    Google Scholar 

  14. Hutter K., van de Ven A.A.F., Ursescu A.: Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids. Springer, Berlin (2006)

    Google Scholar 

  15. Jackson J.D.: Klassische Elektrodynamik. Walter de Gruyter, Berlin (2006)

    Book  Google Scholar 

  16. Javili A., Chatzigeorgiou G., Steinmann P.: Computational homogenization in magneto-mechanics. Int. J. Solids Struct. 50(25–26), 4197–4216 (2013)

    Article  Google Scholar 

  17. Kästner M., Müller S., Goldmann J., Spieler C., Brummund J., Ulbricht V.: Higher-order extended FEM for weak discontinuities—level set representation, quadrature and application to magneto-mechanical problems. Int. J. Numer. Methods Eng. 93(13), 1403–1424 (2013)

    Article  Google Scholar 

  18. Landau L.D., Lifschitz E.M.: Lehrbuch der theoretischen Physik VIII—Elektrodynamik der Kontinua. Akademie-Verlag, Berlin (1974)

    Google Scholar 

  19. Miehe C., Kiefer B., Rosato D.: An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int. J. Solids Struct. 48(13), 1846–1866 (2011)

    Article  Google Scholar 

  20. Moës N., Dolbow J., Belytschko T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46(1), 131–150 (1999)

    Article  MATH  Google Scholar 

  21. Moës N., Cloirec M., Cartraud P., Remacle J.F.: A computational approach to handle complex microstructure geometries. Comput. Methods Appl. Mech. Eng. 192(28–30), 3163–3177 (2003)

    Article  MATH  Google Scholar 

  22. Moon F.C.: Magneto-Solid Mechanics. Wiley, New York (1984)

    Google Scholar 

  23. Mußchelischwili N.I.: Einige Grundaufgaben zur mathematischen Elastizitästheorie. VEB Fachbuchverlag, Leipzig (1971)

    Google Scholar 

  24. Miyata K., Miya K.: Magnetic field and stress analysis of saturated steel. IEEE Trans. Magn. 24(1), 230–233 (1988)

    Article  Google Scholar 

  25. Ogden, R.W., Steigmann, D.J. (eds.): Mechanics and Electrodynamics of Magneto- and Electro-elastic Materials. Springer, Wien (2011)

  26. Paria G.: Magneto-elasticity and magneto-thermo-elasticity. Adv. Appl. Mech. 10, 73–112 (1966)

    Article  Google Scholar 

  27. Ponte Castañeda P., Galipeau E.: Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J. Mech. Phys. Solids 59(2), 194–215 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roeder L., Bender P., Tschöpe A., Birringer R., Schmidt A.M.: Shear modulus determination in model hydrogels by means of elongated magnetic nanoprobes. J. Polym. Sci. Polym. Phys. 50(24), 1772–1781 (2012)

    Article  Google Scholar 

  29. Sawin G.N.: Spannungsüberhöhung am Rande von Löchern. VEB Verlag Technik, Berlin (1956)

    Google Scholar 

  30. Siboni M.H., Ponte Castañeda P.: A magnetically anisotropic, ellipsoidal inclusion subjected to a non-aligned magnetic field in an elastic medium. C. R. Mécanique 340(4–5), 205–218 (2012)

    Article  Google Scholar 

  31. Spieler C., Kästner M., Goldmann J., Brummund J., Ulbricht V.: XFEM modeling and homogenization of magnetoactive composites. Acta Mech. 224(11), 2453–2469 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  32. Spieler C., Metsch P., Kästner M., Ulbricht V.: Microscale modeling of magnetoactive composites undergoing large deformations. Tech. Mech. 34(1), 39–50 (2014)

    Google Scholar 

  33. Sukumar N., Chopp D.L., Moës N., Belytschko T.: Modeling holes and inclusions by level sets in the extended finite-element method. Comput. Methods Appl. Mech. Eng. 190(46–47), 6183–6200 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Spieler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spieler, C., Kästner, M. & Ulbricht, V. Analytic and numeric solution of a magneto-mechanical inclusion problem. Arch Appl Mech 85, 1483–1497 (2015). https://doi.org/10.1007/s00419-014-0952-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0952-9

Keywords

Navigation