Skip to main content
Log in

A partitioned solution approach for electro-thermo-mechanical problems

  • Special
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The purposes of this article are to present new aspects of modeling multi-physically coupled fields, focusing particularly on the partitioned treatment of electro-thermo-mechanical problems. Coupled problems of this kind occur in many industrial applications, such as micro-electrical devices, field-assisted sintering processes or electrical fuses. In this paper, we restrict ourselves to the case of nonlinear thermo-elasticity at finite strains and a heat source resulting from the electrical field. Plasticity effects are not taken into consideration. The objective is to ascertain the coupling of the algorithm relating to the fields involved individually and to demonstrate a global partitioned solution strategy. We also introduce several methods that increase algorithmic stability and accelerate the iterative coupling process. This article aims to present an efficient partitioned coupling strategy for different coupling levels between the fields. To this end, we study the proposed algorithm with the help of several numerical examples ranging from linear to highly nonlinear problems, involving substantial geometric changes and finite strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abaqus: Abaqus 6.12 documentation (2012). http://www.3ds.com/products-services/simulia/portfolio/abaqus/overview/

  2. Armero F., Simo J.C.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992)

    Article  MathSciNet  Google Scholar 

  3. Bonet J., Wood R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  4. Brändli S., Düster A.: A flexible multi-physics coupling interface for partitioned solution approaches. Proc. Appl. Math. Mech. 12, 363–364 (2012)

    Article  Google Scholar 

  5. Crisfield M.A.: Non-linear Finite Element Analysis of Solids And Structures, vol. 2. Wiley, London (1997)

    Google Scholar 

  6. Degroote J., Bathe K.-J., Vierendeels J.: Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction. Comput. Struct. 87, 793–801 (2009)

    Article  Google Scholar 

  7. Degroote J., Haelterman R., Annerel S., Bruggeman P., Vierendeels J.: Performance of partitioned procedures in fluid–structure interaction. Comput. Struct. 88(7–8), 446–457 (2010)

    Article  Google Scholar 

  8. Degroote J., Vierendeels J.: Multi-solver algorithms for the partitioned simulation of fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 200(25–28), 2195–2210 (2011)

    Article  MathSciNet  Google Scholar 

  9. Degroote J., Vierendeels J.: Multi-level quasi-Newton coupling algorithms for the partitioned simulation of fluid–structure interaction. Comput. Methods Appl. Mech. Eng. 225, 14–27 (2012)

    Article  MathSciNet  Google Scholar 

  10. Düster, A.: High order finite elements for three-dimensional, thin-walled nonlinear continua. Ph.D. thesis, Lehrstuhl für Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Technische Universität München (2001)

  11. Düster A., Bröker H., Rank E.: The p-version of the finite element method for three-dimensional curved thin walled structures. Int. J. Numer. Methods Eng. 52, 673–703 (2001)

    Article  Google Scholar 

  12. Düster A., Demkowicz L., Rank E.: High order finite elements applied to the discrete Boltzmann equation. Int. J. Numer. Methods Eng. 67, 1094–1121 (2006)

    Article  Google Scholar 

  13. Düster A., Hartmann S., Rank E.: p-FEM applied to finite isotropic hyperelastic bodies. Comput. Methods Appl. Mech. Eng. 192, 5147–5166 (2003)

    Article  Google Scholar 

  14. Düster, A., Kollmannsberger, S.: AdhoC4—user’s guide. Lehrstuhl für Computation in Engineering, TU München, Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik, TU Hamburg-Harburg (2010)

  15. Düster A., Niggl A., Nübel V., Rank E.: A numerical investigation of high-order finite elements for problems of elasto-plasticity. J. Sci. Comput. 17, 429–437 (2002)

    Article  Google Scholar 

  16. Düster A., Niggl A., Rank E.: Applying the hpd version of the FEM to locally enhance dimensionally reduced models. Comput. Methods Appl. Mech. Eng. 196, 3524–3533 (2007)

    Article  Google Scholar 

  17. Düster A., Rank E.: The p-version of the finite element method compared to an adaptive h-version for the deformation theory of plasticity. Comput. Methods Appl. Mech. Eng. 190, 1925–1935 (2001)

    Article  Google Scholar 

  18. Düster A., Rank E.: A p-version finite element approach for two- and three-dimensional problems of the J 2 flow theory with non-linear isotropic hardening. Int. J. Numer. Methods Eng. 53, 49–63 (2002)

    Article  Google Scholar 

  19. Düster A., Scholz D., Rank E.: pq-Adaptive solid finite elements for three-dimensional plates and shells. Comput. Methods Appl. Mech. Eng. 197, 243–254 (2007)

    Article  Google Scholar 

  20. Ehlers W., Eipper G.: The simple tension problem at large volumetric strains computed from finite hyperelastic material laws. Acta Mech. 130, 17–27 (1998)

    Article  MathSciNet  Google Scholar 

  21. Erbts P., Erbts P.: Acceleration of partitioned coupling schemes for problems of thermoelasticity. Proc. Appl. Math. Mech. 12, 367–368 (2012)

    Article  Google Scholar 

  22. Erbts P., Düster A.: Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Comput. Math. Appl. 64, 2408–2430 (2012)

    Article  MathSciNet  Google Scholar 

  23. Erbts P., Rothe S., Düster A., Hartmann S.: Coupling algorithms for small strain thermo-viscoplasticity: monolithic vs. partitioned approach. In: Heim, H.P., Biermann, D., Maier, H.J. (eds) Proceedings of the 1st International Conference on Thermo-mechanically Graded Materials, pp. 97–102. Verlag Wissenschaftliche Scripten, Kassel (2012)

    Google Scholar 

  24. Farhat C., Park K.C., Dubois-Pelerin Y.: An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems. Comput. Methods Appl. Mech. Eng. 85(85), 349–365 (1991)

    Article  Google Scholar 

  25. Felippa C., Park K., Farhat C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 3247–3270 (2001)

    Article  Google Scholar 

  26. Geller S., Kollmannsberger S., Bettah M., Scholz D., Düster A., Krafczyk M., Rank E.: An explicit model for three-dimensional fluid–structure interaction using LBM and p-FEM. In: Bungartz, H.J., Mehl, M., Schäfer, M. (eds) Fluid–Structure Interaction II, Modelling, Simulation and Optimization, vol. 73 of Lecture Notes in Computational Science and Engineering., pp. 285–325. Springer, Berlin (2010)

    Google Scholar 

  27. Gerbeau J.F., Vidrascu M.: A quasi-Newton method algorithm based on reduced model for fluid structure interaction problems in blood flows. Math. Model. Numer. Anal. 37, 631–647 (2003)

    Article  MathSciNet  Google Scholar 

  28. Hamkar A.-W., Hartmann S.: Theoretical and numerical aspects in weak-compressible finite strain thermo-elasticity. J. Theor. Appl. Mech. 50, 3–22 (2012)

    Google Scholar 

  29. Hartmann, S.: Comparison of the multiplicative decompositions FF Θ F m and FF m F Θ in finite strain thermo-elasticity. Technical report Series Fac3-12-01, Faculty of Mathematics/Computer Sciences and Mechanical Engineering, Clausthal University of Technology (Germany) (2012)

  30. Hartmann S., Duintjer Tebbens J., Quint K.J., Meister A.: Iterative solvers within sequences of large linear systems in non-linear structural mechanics. J. Appl. Math. Mech. ZAMM 89(9), 711–728 (2009)

    Article  MathSciNet  Google Scholar 

  31. Hartmann S., Neff P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct. 40(11), 2767–2791 (2003)

    Article  MathSciNet  Google Scholar 

  32. Hartmann S., Rothe S., Frage N.: Electro-thermo-elastic simulation of graphite tools used in sps processes. In: Altenbach, H., Forest, S., Krivtsov, A. (eds) Generalized Continua as Models for Materials: With Multi-scale Effects or Under Multi-field Actions, Advanced Structured Materials, Springer, Berlin (2013)

  33. Hartmann S., Rothe S.: A rigorous application of the method of vertical lines to coupled systems in finite element analysis. In: Ansorge, R., Bijl, H., Meister, A., Sonar, T. (eds) Recent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws, vol. 120 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pp. 161–175. Springer, Berlin (2013)

    Chapter  Google Scholar 

  34. Haupt P.: Continuum Mechanics and Theory of Materials, 2nd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  35. Heißerer U., Hartmann S., Düster A., Bier W., Yosibash Z., Rank E.: p-FEM for finite deformation powder compaction. Comput. Methods Appl. Mech. Eng. 197, 727–740 (2008)

    Article  Google Scholar 

  36. Heißerer U., Hartmann S., Düster A., Yosibash Z.: On volumetric locking-free behavior of p-version finite elements under finite deformations. Commun. Numer. Methods Eng. 24, 1019–1032 (2008)

    Article  Google Scholar 

  37. Holzapfel G.A.: Nonlinear Solid Mechanics. Wiley, Chichester (2000)

    Google Scholar 

  38. Irons B., Tuck R.C.: A version of the Aitken accelerator for computer implementation. Int. J. Numer. Methods Eng. 1, 275–277 (1969)

    Article  Google Scholar 

  39. Kassiotis C., Colliat J.-B., Ibrahimbegovic A., Matthies H.G.: Multiscale in time and stability analysis of operator split solution procedures applied to thermomechanical problems. Eng. Comput. 26(1/2), 205–223 (2009)

    Article  Google Scholar 

  40. Kollmannsberger S., Geller S., Düster A., Tölke J., Sorger C., Krafczyk M., Rank E.: Fixed-grid fluid–structure interaction in two dimensions based on a partitioned Lattice Boltzmann and p-FEM approach. Int. J. Numer. Methods Eng. 79(7), 817–845 (2009)

    Article  Google Scholar 

  41. Komech A., Komech A.: Principles of Partial Differential Equations, 1st edn. Springer, New York (2009)

    Book  Google Scholar 

  42. Krüger, M.: Energie-Entropie-konsistente Zeitintegratoren für die nichtlienare Thermoviskoelastodynamik. Dissertation, band vi, Lehrstuhl für Numerische Mechanik, Universität Siegen, Siegen (2012)

  43. Krüger, M., Gross, M., Betsch, P.: Energy–entropy consistent time-integration for non-linear thermo-viscoelastic continua. In: Oñate, E., Oliver, J., Huerta, A. (eds.) 11th World Congress on Computational Mechanics, Spain, Barcelona, pp. 1–12 (2014)

  44. Küttler U., Wall W.: Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 1(43), 61–72 (2008)

    Article  Google Scholar 

  45. Lu, S., Pister, K.: Decomposition of deformation and representation of the free energy function for isotropic thermoelastic solids. Int. J. Solids Struct. 11, 927–935 (1975)

  46. Lubarda V.A.: Constitutive theories based on the multiplicative decomposition of deformation gradient: thermoelasticity, elastoplasticity, and biomechanics. Appl. Mech. Rev. 57(2), 95 (2004)

    Article  Google Scholar 

  47. MacLeod A.J.: Acceleration of vector sequences by multi-dimensional Δ2 methods. Commun. Appl. Numer. Methods 1, 3–20 (1986)

    Google Scholar 

  48. Mankame N.D., Ananthasuresh G.K.: Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator. J. Micromech. Microeng. 11(5), 452 (2001)

    Article  Google Scholar 

  49. Miehe C.: Entropic thermoelasticity at finite strains. Aspects of the formulation and numerical implementation. Comput. Methods Appl. Mech. Eng. 120, 243–269 (1995)

    Article  MathSciNet  Google Scholar 

  50. Minami S., Yoshimura S.: Performance evaluation of nonlinear algorithms with line-search for partitioned coupling techniques for fluid–structure interactions. Int. J. Numer. Methods Fluids 64, 1129–1147 (2010)

    Article  MathSciNet  Google Scholar 

  51. Munir Z.A., Quach D.V.: Electric current activation of sintering: a review of the pulsed electric current sintering process. J. Am. Ceram. Soc. 94, 1–19 (2011)

    Article  Google Scholar 

  52. Netz, T.: High-order space and time discretization scheme applied to problems of finite thermo-viscoelasticity. Ph.D. thesis, Report no. 3/2013, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2013)

  53. Netz T., Düster A., Hartmann S.: High-order finite elements compared to low-order mixed element formulations. J. Appl. Math. Mech. 93, 163–176 (2013)

    Google Scholar 

  54. Netz T., Hamkar A.-W., Hartmann S.: High-order quasi-static finite element computations in space and time with application to finite strain viscoelasticity. Comput. Math. Appl. 66, 441–459 (2013)

    Article  MathSciNet  Google Scholar 

  55. Olevsky E.A., Garcia-Cardona C., Bradbury W.L., Haines C.D., Martin D.G., Kapoor D.: Fundamental aspects of spark plasma sintering: II. Finite element analysis of scalability. J. Am. Ceram. Soc. 95(8), 2414–2422 (2012)

    Article  Google Scholar 

  56. Paraview: Paraview documentation (2012). http://paraview.org/paraview/help/documentation.html

  57. Park K.C.: Stabilization of partitioned solution procedure for pore fluid–soil interaction analysis. Int. J. Numer. Methods Eng. 19, 1669–1673 (1983)

    Article  Google Scholar 

  58. Piperno S.: Explicit/implicit fluid–structure staggered procedures with a structural predictor and fluid subcycling for 2d inviscid aeroelastic simulations. Int. J. Numer. Methods Fluids 25, 1207–1226 (1997)

    Article  MathSciNet  Google Scholar 

  59. Quint, K.J.: Thermomechanically coupled processes for functionally graded materials: experiments, modelling, and finite element analysis using high-order DIRK-methods. Ph.D. thesis, Report no. 2/2012, Institute of Applied Mechanics, Clausthal University of Technology, Clausthal-Zellerfeld (2012)

  60. Quint K.J., Hartmann S., Rothe S., Saba N., Steinhoff K.: Experimental validation of high-order time integration for non-linear heat transfer problems. Comput. Mech. 48(1), 81–96 (2011)

    Article  Google Scholar 

  61. Reddy J.N., Gartling D.K.: The Finite Element Method in Heat Transfer and Fluid Dynamics, 3rd edn. CRC Press, Taylor & Francis, Boca Raton (2010)

    Google Scholar 

  62. Simo J.C., Hughes T.J.R.: Computational Inelasticity. Springer, Berlin (1998)

    Google Scholar 

  63. Simo J.C., Miehe C.: Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput. Methods Appl. Mech. Eng. 98, 41–104 (1991)

    Article  Google Scholar 

  64. Song Y., Yuanyuan L., Zhaoyao Z., Yangen L., Yoangquan Y.: A multi-field coupled FEM model for one-step-forming process of spark plasma sintering considering local densification of powder material. J. Mater. Sci. 46, 5645–5656 (2011)

    Article  Google Scholar 

  65. Szabó B.A., Babuška I.: Finite Element Analysis. Wiley, London (1991)

    Google Scholar 

  66. Szabó B.A., Düster A., Rank E.: The p-version of the finite element method. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds) Encyclopedia of Computational Mechanics, vol. 1, chap. 5, pp. 119–139. Wiley, London (2004)

    Google Scholar 

  67. Thomas L.D., Triantafyllidis N.: On electromagnetic forming processes in finitely strained solids: theory and examples. J. Mech. Phys. Solids 57, 1391–1416 (2009)

    Article  MathSciNet  Google Scholar 

  68. Vierendeels J., Lanoye L., Degroote J., Verdonck P.: Implicit coupling of partitioned fluid–structure interaction problems with reduced order models. Comput. Struct. 85, 970–976 (2007)

    Article  Google Scholar 

  69. Vujosevic, L., Lubarda, V.A.: Finite-strain thermoelasticity based on multiplicative decomposition of deformation gradient. J. Theor. Appl. Mech. 28–29, 379–299 (2002)

  70. Wriggers P.: Nonlinear Finite-Element-Methods. Springer, Berlin (2008)

    Google Scholar 

  71. Zienkiewicz O.C., Paul D.K., Chan A.H.: Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Numer. Methods Eng. 26, 1039–1055 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Erbts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erbts, P., Hartmann, S. & Düster, A. A partitioned solution approach for electro-thermo-mechanical problems. Arch Appl Mech 85, 1075–1101 (2015). https://doi.org/10.1007/s00419-014-0941-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0941-z

Keywords

Navigation