Abstract
Using a lumped mass model of a single rub-impact rotor system considering the gyroscopic effect, the stability and steady-state response of the rotor system are investigated in this paper. The contact between the rotor and the stator is described by the simple Coulomb friction and piecewise linear spring models. An algorithm combining harmonic balance method with pseudo arc-length continuation is adopted to calculate the steady-state vibration response of a nonlinear system. Meanwhile, Hill’s method is used to analyze the stability of the system. The nonlinear dynamic characteristics of the system are investigated when the gap size, stator stiffness and unbalance are regarded as the control parameters. The results show that the gap size determines the location of the rub-impact; besides, the smaller gap can improve the stability of the system. The unsteady motion can be found as the stator stiffness increases. Moreover, the unbalance directly affects vibration amplitude, which becomes greater with the increasing imbalance.
This is a preview of subscription content, access via your institution.
Abbreviations
- A, B :
-
Derivative matrixes
- a :
-
Fourier transformed displacement of q
- \({{\tilde{ \varvec {a}}}}\) :
-
Augmented unknown vector
- a 0, a i (i = 1, 2, …,n):
-
Fourier coefficients of constant and sine term
- b i (i = 1, 2, …,n):
-
Fourier coefficient of cosine term
- \({{\tilde{\varvec {C}}}}\) :
-
Augmented damping matrix
- c :
-
Gap size
- c lx , c rx , c ly , c ry :
-
Dampings of the bearings in x and y directions
- D 1 :
-
Viscous damping
- D 2 :
-
Supporting damping
- e 1, e 2 :
-
Eccentric distances of two disks
- F e , F non :
-
Exciting force vector, nonlinear force vector
- \({{\tilde{\varvec {F}}_e, \, {\tilde{\varvec {F}}}_{\rm non}}}\) :
-
Nondimensional exciting force and nonlinear force vector
- f :
-
Fourier component vector of nonlinear function
- f n , f t :
-
Normal contact force, tangential contact force
- \({\tilde{f}_n, {\tilde{f}}_t }\) :
-
Nondimensional normal and tangential contact forces
- G :
-
Gyroscopic matrix
- g :
-
Constraint equation of pseudo arc-length
- g s :
-
Single-sided contact function
- \({{\tilde{\varvec {J}}}}\) :
-
Augmented Jacobi matrix
- J di , J pi (i = 1, 2, 3, 4, 5):
-
Diametral and polar moment of inertia
- K :
-
Stiffness matrix
- \({{\tilde{\varvec {K}}}}\) :
-
Augmented stiffness matrix
- k :
-
Number of harmonic components
- k lx , k ly , k rx , k ry :
-
Stiffnesses of the bearings in x and y directions
- k n :
-
Stator stiffness
- M :
-
Mass matrix
- \({{\tilde{\varvec {M}}}}\) :
-
Augmented mass matrix
- m i (i = 1, 2, 3, 4, 5):
-
Lumped mass
- N :
-
Sampling points per cycle in HBM
- n :
-
Dimension of system
- \({\varvec {q}, { \dot {\varvec q}}, { \ddot {\varvec q}}}\) :
-
Displacement, velocity, acceleration vector of the system
- \({{\tilde{\varvec {q}}}, {\dot{\tilde{\varvec {q}}}}, {\ddot {\tilde{\varvec {q}}}}}\) :
-
Nondimensional displacement, velocity, acceleration vector of the system
- Q :
-
Orthonormal square matrix
- R :
-
Fourier transformed residual
- r :
-
Residual
- s :
-
Arc-length
- T :
-
Nondimensional operating time
- t :
-
Operating time
- u :
-
Fourier component vector of exciting force
- x i , y i (i = 1, 2, 3, 4, 5):
-
Displacements in x and y directions
- \({{\tilde{x}}_i, \, {\tilde{y}}_i (i = 1,2,3,4,5)}\) :
-
Nondimensional displacements in x and y directions
- λ:
-
Eigenvalue
- η :
-
Downhill factor
- δ :
-
Piecewise function
- ξ 1, ξ 2 :
-
The first and second modal damping ratios
- θ xi , θ yi (i = 1, 2, 3, 4, 5):
-
Angles of orientation associated with the x and y axes
- σ :
-
Control factor
- μ :
-
Friction coefficient
- ɛ :
-
Tolerance
- ɛ p :
-
Perturbation
- \({{\bf {\kappa}}_p}\) :
-
Periodic term in the perturbation
- \({{\tau}}\) :
-
Tangent vector
- φ 1, φ 2 :
-
Phase angles of the unbalanced force
- ϕ :
-
Nondimensional time
- ω :
-
Rotating frequency
- ω n1, ω n2 :
-
The first and the second natural frequencies
- ν :
-
Subharmonic ratio
- \({\mathfrak{R}}\) :
-
Upper triangular matrix
- Γ :
-
DFT matrix
References
Muzynska A.: Rotor-to-stationary element rub-related vibration phenomena in rotating machinery. Shock Vib. Digest. 21, 3–11 (1989)
Chu F.L., Lu W.X.: Stiffening effect of the rotor during the rotor-to-stator rub in a rotating machine. J. Sound Vib. 308, 758–766 (2007)
Zhang W.M., Meng G., Chen D. et al.: Nonlinear dynamics of a rub-impact micro-rotor system with scale-dependent friction model. J. Sound Vib. 309, 756–777 (2008)
Chu F.L., Zhang Z., Zhang Z.: Quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 35, 963–973 (1997)
Chu F.L., Zhang Z.: Bifurcation and chaos in rub-impact Jeffcott rotor system. J. Sound Vib. 210, 1–18 (1998)
Dai X.J., Zhang X., Jin X.: The partial and full rubbing of a flywheel rotor-bearing-stop system. Int. J. Mech. Sci. 43, 505–519 (2001)
Li G.X., Paidoussis M.E.: Impact phenomena of rotor-casing dynamical systems. Nonlinear Dyn. 5, 53–70 (1994)
Choy F.K., Padovan J.: Non-linear transient analysis of rotor-casing rub events. J. Sound Vib. 113, 529–545 (1987)
Sun Z.C., Xu J.X., Zhou T.: Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mech. Mach. Theory 37, 659–672 (2002)
Chang-Jian C.W., Chen C.K.: Chaos and bifurcation of a flexible rub-impact rotor supported by oil film bearings with nonlinear suspension. Mech. Mach. Theory 42, 312–333 (2007)
Wang J.G., Zhou J.Z., Dong D.W. et al.: Nonlinear dynamic analysis of a rub-impact rotor supported by oil film bearings. Arch. Appl. Mech. 83, 413–430 (2013)
Choy F.K., Padovan J.: Non-linear transient analysis of rotor-casing rub events. J. Sound Vib. 113, 529–545 (1987)
Zhang H.B., Chen Y.S.: Bifurcation analysis on full annular rub of a nonlinear rotor system. Sci. China 54, 1977–1985 (2011)
Zhang H.B., Chen Y.S., Li J.: Bifurcation on synchronous full annular rub of rigid-rotor elastic-support system. Appl. Math. Mech. (English Edition) 33, 865–880 (2012)
Zhang G.F., Xu W.N., Xu B. et al.: Analytical study of nonlinear synchronous full annular rub motion of flexible rotor–stator system and its dynamic stability. Nonlinear Dyn. 57, 579–592 (2009)
Han Q.K., Zhang Z.W., Liu C.L. et al.: Periodic motion stability of a dual-disk rotor system with rub-impact at fixed limiter. Vibro-impact Dyn. Ocean Syst. 44, 105–119 (2009)
Qin Z.Y., Han Q.K., Chu F.L.: Analytical model of bolted disk-drum joints and its application to dynamic analysis of jointed rotor. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 646–663 (2014)
Villa C., Sinou J.J., Thouverez F.: Stability and vibration analysis of a complex flexible rotor bearing system. Commun. Nonlinear Sci. Numer. Simul. 13, 804–821 (2008)
Choi Y.S., Noah S.T.: Nonlinear steady-state response of a rotor support system. J. Vib. Acoust. Stress Reliab. Des. 109, 255–261 (1987)
Kim Y.B., Noah S.T., Choi Y.S.: Periodic response of multi-disk rotor with bearing clearances. J. Sound Vib. 144, 381–395 (1991)
Markert R., Wegener G.: Transient vibrations of elastic rotors in retainer bearings, Proceedings of ISROMAC-7, pp. 764–774. Bird Rock Publ. House, Hawaii (1998)
Wegener, G., Markert, R., Pothmann, K.: Steady-state-analysis of a multi-disk or continuous rotor with one retainer bearing. In: Proceedings of IFToMM 5th International Conference on Rotor Dynamics, Braunschweig, Germany (1998)
Groll G., Ewins D.J.: The harmonic balance method with arc-length continuation in rotor stator contact problems. J. Sound Vib. 241, 223–233 (2001)
Abdul Azeez M.F., Vakakis A.F.: Numerical and experimental analysis of a continuous overhung rotor undergoing vibro-impacts. Int. J. Non-linear Mech. 34, 415–435 (1999)
Lee C.W., Jei Y.G.: Model analysis of continuous rotor-bearing system. J. Sound Vib. 126, 345–361 (1988)
Eshleman, R.L., Eubanks, R. A.: On the critical speeds of a continuous rotor. J. Eng. Ind. 91, 1180–1188 (1969)
Ma H., Tai X.Y., Sun J. et al.: Analysis of dynamic characteristics for a dual-disk rotor system with single rub-impact. Adv. Sci. Lett. 4, 2782–2789 (2011)
Fischer, J., Strackeljan, J.: FEM-simulation and stability analyses of high speed rotor systems. In: 7th IFToMM—Conference on Rotor Dynamics, Vienna, Austria 25– 28 (2006)
Roques S., Legrand M., Cartraud P. et al.: Modeling of a rotor speed transient response with radial rubbing. J. Sound Vib. 329, 527–546 (2010)
Bathe K., Wilson E.: Numerical methods in finite element analysis. Prentice-Hall, New Jersey (1976)
Kim T.C., Rook T.E., Singh R.: Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity. J. Sound Vib. 263, 665–678 (2003)
Sarrout, E., Sinou, J.J.: Non-linear periodic and quasi-periodic vibrations in mechanical systems-on the use of the harmonic balance methods. Advances in Vibration Analysis Research, InTech (2011)
Zhu F.: Nonlinear Dynamics of One-Way Clutches and Dry Friction Tensioners in Belt-Pulley System. The Ohio State University, USA (2006)
Seydel R.: Practical bifurcation and stability analysis. Springer, Berlin (1994)
Weerakoon S., Fernando T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)
Kim T.C., Rook T.E., Singh R.: Super- and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method. J. Sound Vib. 281, 965–993 (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tai, X., Ma, H., Liu, F. et al. Stability and steady-state response analysis of a single rub-impact rotor system. Arch Appl Mech 85, 133–148 (2015). https://doi.org/10.1007/s00419-014-0906-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00419-014-0906-2
Keywords
- Steady-state response
- Stability
- Single rub-impact
- Rotor system
- Harmonic balance method