Born M., Huang K.: Dynamical Theory of Crystal Lattices. Oxford University Press, Oxford (1956)
Google Scholar
Carborg C.F., Shiomi J., Maruyama S.: Thermal boundary resistance between single-walled carbon nanotubes and surrounding matrices. Phys. Rev. B 78, 205406 (2008)
Article
Google Scholar
Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory. Part I: instantaneous mechanical variables. Physica A 322, 359–376 (2003)
Article
MATH
Google Scholar
Chen Y., Lee J.D.: Connecting molecular dynamics to micromorphic theory. Part II: balance laws. Physica A 322, 359–376 (2003)
Article
MATH
Google Scholar
Chen Y., Lee J.D., Eskandarian A.: Examining physical foundation of continuum theories from viewpoint of phonon dispersion relations. Int. J. Eng. Sci. 41, 61–83 (2003)
MathSciNet
Article
MATH
Google Scholar
Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)
Article
MATH
Google Scholar
Chen Y., Lee J.D.: Atomistic formulation of a multiscale theory for nano/micro physics. Philos. Mag. 85, 4095–4126 (2005)
Article
Google Scholar
Chen Y.: Local stress and heat flux in atomistic systems involving three-body forces. J. Chem. Phys. 124, 054113 (2006)
Article
Google Scholar
Chen Y.: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009)
Article
Google Scholar
Chen Y., Zimmerman J., Krivtsov A., McDowell D.L.: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1337–1349 (2011)
Article
Google Scholar
Dove M.T.: Introduction to Lattice Dynamics. Cambridge University Press, Cambridge (1993)
Book
Google Scholar
Eringen A.C., Suhubi E.S.: Nonlinear theory of simple micro-elastic solids-I. Int. J. Eng. Sci. 2, 189–203 (1964)
MathSciNet
Article
MATH
Google Scholar
Eringen A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer, New York (1999)
Book
MATH
Google Scholar
Gale J.D., Rohl A.L.: The general utility lattice program. Mol. Simul. 29, 291–341 (2003)
Article
MATH
Google Scholar
Hardy R.: Formulas for determining local properties in molecular-dynamics simulations: shock waves. J. Chem. Phys. 76, 622–628 (1982)
Article
Google Scholar
Heino P.: Dispersion and thermal resistivity in silicon nanofilms by molecular dynamics. Eur. Phys. J. B 60, 171–179 (2007)
Article
Google Scholar
Henry A.S., Chen G.: Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics. J. Comput. Theor. Nanosci. 5, 1–12 (2008)
Article
Google Scholar
Irving J., Kirkwood J.: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 8, 817–829 (1950)
MathSciNet
Article
Google Scholar
Jund P., Julien R.: Molecular dynamics calculation of the thermal conductivity of Vitreous Silica. Phys. Rev. B 59, 13707–13711 (1999)
Article
Google Scholar
Kirkwood J.: The statistical mechanical theory of transport processes. I. General theory. J. Chem. Phys. 14, 180–201 (1946)
Article
Google Scholar
Kogure Y., Tsuchiya T., Hiki Y.: Simulations of dislocation configuration in rare gas crystals. J. Phys. Soc. Jpn. 56, 989 (1987)
Article
Google Scholar
Kong L.: Phonon dispersion measured directly from molecular dynamics simulations. Comput. Phys. Commun. 182, 2201–2207 (2011)
Article
Google Scholar
Ladd A.J.C., Moran B., Hoover W.G.: Lattice thermal conductivity: a comparison of molecular dynamics and anharmonic lattice dynamics. Phys. Rev. B. 34, 5058 (1986)
Article
Google Scholar
McGaughey A.J.H., Kaviany M.: Quantitative validation of the Boltzmann transport equation phonon thermal conductivity model under the single-model relaxation time approximation. Phys. Rev. B 69, 094303 (2004)
Article
Google Scholar
Placidi, L., Rosi, G., Giorgio, I., Madeo, A.: Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Math. Mech. Solids (2014). doi:10.1177/1081286512474016
Rutledge G.C., Lacks D.J., Martonak R., Binder K.: A comparison of quasiharmonic lattice dynamics and Monte Carlo simulation of polymeric crystals using orthorhombic polyethylene. J. Chem. Phys. 108, 10274 (1998)
Article
Google Scholar
Schelling P.K., Phillpot S.R., Keblinski P.: Phonon wave-packet dynamics at semiconductor interfaces by molecular-dynamics simulation. Appl. Phys. Lett. 80, 2484 (2002)
Article
Google Scholar
Thomas J.A., Iutzi R.M., McGaughey A.J.H.: Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Phys. Rev. B 81, 045413 (2010)
Article
Google Scholar
Xiong L., Tucker G., McDowell D.L., Chen Y.: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids 59, 160–177 (2011)
Article
MATH
Google Scholar
Xiong L., Deng Q., Tucker G., McDowell D.L., Chen Y.: A concurrent scheme for passing dislocations from atomistic to continuum regions. Acta Materialia 60, 899–913 (2012)
Article
Google Scholar
Xiong, L., Deng, Q., Tucker, G., McDowell, D.L., Chen, Y.: Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. Int. J. Plast. 86–101 (2012)
Xiong L., McDowell D.L., Chen Y.: Nucleation and growth of dislocation loops in Cu, Al and Si by a concurrent atomistic–continuum method. Script Materialia 67, 633–636 (2012)
Article
Google Scholar
Xiong, L., Xu, S., McDowell, D.L., Chen, Y.: Concurrent atomistic–continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. (under review) (2014)