Modeling of strongly nonlinear effects in diatomic lattices
Special Issue
First Online:
- 105 Downloads
- 3 Citations
Abstract
A previously developed strongly nonlinear continuum model for diatomic crystals is examined using continuum limit of a discrete diatomic model. It suggested suitable expression for the forces in the discrete model; however, its continuum limit not only explains the nonlinear terms continuum model but also gives rise to some additional terms. It turns out that one of them supports bell-shaped localized variations in the diatomic material but suppresses kink-shaped variations.
Keywords
Diatomic lattice Continuum limit Nonlinear equation Traveling wave solution Localized strain wavePreview
Unable to display preview. Download preview PDF.
References
- 1.Aero E.L.: Micromechanics of a double continuum in a model of a medium with variable periodic structure. J. Eng. Math. 55, 81–95 (2002)MathSciNetCrossRefGoogle Scholar
- 2.Aero E.L., Bulygin A.N.: Strongly nonlinear theory of nanostructure formation owing to elastic and nonelastic strains in crystalline solids. Mech. Solids 42, 807–822 (2007)CrossRefGoogle Scholar
- 3.Porubov A.V., Aero E.L., Maugin G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E 79, 046608 (2009)MathSciNetCrossRefGoogle Scholar
- 4.Sayadi M.K., Pouget J.: Soliton dynamics in a microstructured lattice model. J. Phys. A: Math. Gen. 24, 2151–2172 (1991)CrossRefGoogle Scholar
- 5.Maugin G.A., Pouget J., Drouot R., Collet B.: Nonlinear Electromechanical Couplings. Wiley, UK (1992)Google Scholar
- 6.Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, UK (1999)Google Scholar
- 7.dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peri-dynamics, non-local and higher gradient continuum mechanics. An underestimated and still topical contribution of Gabrio Piola, to appear in Mechanics and Mathematics of Solids (MMS) (2013)Google Scholar
- 8.Alibert J.-J., Seppecher P., dell’Isola F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8, 51–73 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Askar A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1985)Google Scholar
- 10.Zabusky N.J., Deem G.S.: Dynamics of nonlinear lattices. I. Localized optical excitations, acoustic radiation, and strong nonlinear behavior. J. Comput. Phys. 2, 126–153 (1967)CrossRefGoogle Scholar
- 11.Kosevich A.M., Kovalev A.S.: Self-localization of vibrations in a one-dimensional anharmonic chain. Sov. Phys. JETP 40, 891–896 (1975)Google Scholar
- 12.Manevich L.I. et al.: Solitons in non-degenerated bistable systems. Physics-Uspekhi 37, 859–879 (1994)CrossRefGoogle Scholar
- 13.Kevrekidis, P.G.: Non-linear waves in lattices: past, present, future. IMA J. Appl. Math. 1–35 (2010). doi: 10.1093/imamat/hxr015
- 14.Sena S., Hong J., Bangb J., Avalosa E., Doneyd R.: Solitary waves in the granular chain. Phys. Rep. 462, 21–66 (2008)MathSciNetCrossRefGoogle Scholar
- 15.Porter M.A., Daraio C., Herbold E.B., Szelengowicz I., Kevrekidis P.G.: Highly nonlinear solitary waves in periodic dimer granular chains. Phys. Rev. E 77, 015601R (2008)CrossRefGoogle Scholar
- 16.Andrianov, I.V., Awrejcewicz, J., Weichert, D.: Improved continuous models for discrete media, Mathematical Problems in Engineering (Open Access), Article ID 986242. doi: 10.1155/2010/986242 (2010)
- 17.Born, M., Kármán, Th.von : Über Schwingungen in Raumgittern. Phys. Zeitschr. 13, 297–309 (1912)Google Scholar
- 18.Born M., Huang K.: Dynamic Theory of Crystal Lattices. Clarendon Press, Oxford (1954)Google Scholar
- 19.Brillouin L., Parodi M.: Wave Propagation in Periodic Structures. Dover, New York (1953)zbMATHGoogle Scholar
- 20.Yajima N., Satsuma J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979)CrossRefGoogle Scholar
- 21.Pnevmatikos St., Remoissenet M., Flytzanis N.: Propagation of acoustic and optical solitons in nonlinear diatomic chains. J. Phys. C: Solid State Phys. 16, L305–L310 (1983)CrossRefGoogle Scholar
- 22.Collins M.A.: Solitons in the diatomic chain. Phys. Rev. 31, 1754–1762 (1985)CrossRefGoogle Scholar
- 23.Pnevmatikos St., Flytzanis N., Remoissenet M.: Soliton dynamics of nonlinear diatomic lattices. Phys. Rev. B 33, 2308–2311 (1986)CrossRefGoogle Scholar
- 24.Landa P.S.: Nonlinear Oscillations and Waves in Dynamical Systems. Kluwer, Dordrecht (1996)CrossRefzbMATHGoogle Scholar
- 25.Huang G.: Soliton excitations in one-dimensional diatomic lattices. Phys. Rev. B 51, 12347–12360 (1995)CrossRefGoogle Scholar
- 26.Porubov A.V., Andrianov I.V.: Nonlinear waves in diatomic crystals. Wave Motion 50, 1153–1160 (2013)MathSciNetCrossRefGoogle Scholar
- 27.Luongo A.: Mode localization by structural imperfections in one-dimensional continuous systems. J. Sound Vib. 155(2), 249–271 (1992)CrossRefzbMATHGoogle Scholar
- 28.Luongo A.: Mode localization in dynamics and buckling of linear imperfect continuous structures. Nonlinear Dyn. 25(1–3), 133–156 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Luongo A.: On the amplitude modulation and localization phenomena in interactive buckling problems. Int. J. Solids Struct. 27(15), 1943–1954 (1991)CrossRefzbMATHGoogle Scholar
- 30.Luongo A., Paolone A., Di Egidio A.: Multiple timescales analysis for 1:2 and 1:3 resonant Hopf bifurcations. Nonlinear Dyn. 34(3–4), 269–291 (2003)CrossRefzbMATHGoogle Scholar
- 31.Luongo A., Di Egidio A.: Divergence, Hopf and double-zero bifurcations of a nonlinear planar beam. Comput. Struct. 84(24–25), 1596–1605 (2006)CrossRefGoogle Scholar
- 32.Di Egidio A., Luongo A., Paolone A.: Linear and non-linear interactions between static and dynamic bifurcations of damped planar beams. Int. J. Non-Linear Mech. 42(1), 88–98 (2007)CrossRefzbMATHGoogle Scholar
- 33.dell’Isola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 165–182 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
- 34.Carcaterra A., Akay A.: Dissipation in a finite-size bath. Phys. Rev. E 84, 011121 (2001)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2014