Skip to main content
Log in

Fracture analysis of mode III crack problems for the piezoelectric bimorph

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a symplectic method based on the Hamiltonian system is proposed to analyze the interfacial fracture in the piezoelectric bimorph under anti-plane deformation. A set of Hamiltonian governing equations is derived from the Hamiltonian function by introducing dual variables of generalized displacements and stresses which can be expanded in series in terms of the symplectic eigensolutions. With the aid of the adjoint symplectic orthogonality, coefficients of the series are determined by the boundary conditions along the crack faces and along the external geometry. The stress\electric displacement intensity factors and energy release rates (G) directly relate to the first few terms of the nonzero eigenvalue solutions. The two ideal crack boundary conditions, namely the electrically impermeable and permeable crack assumptions, are considered. Numerical examples including the complex mixed boundary conditions are considered to show fracture behaviors of the interface crack and discuss the influencing factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

\({C_{44}^i,\,e_{15}^i,\,\kappa _{11}^i}\) :

Elastic stiffness, piezoelectric constant and dielectric constant

\({D_r^i,\,D_\theta ^i}\) :

Electric displacements

\({E_r^i,\,E_\theta ^i}\) :

Electric fields

F iQ i :

Body force and electric charge density

G IG P :

Total energy release rate

H :

Hamiltonian function

\({K_{\rm S}^I,\,K_{\rm S}^P}\) :

Strain intensity factor for two types of electric boundary conditions

\({K_{\rm E}^I,\,K_{\rm E}^P}\) :

Electric field intensity factor

\({K_3^I,\,K_3^P}\) :

Stress intensity factor

\({K_{\rm D}^I,\,K_{\rm D}^P}\) :

Electric displacement intensity factor

L i :

Lagrangian function

U iΠ i :

Potential energy density function and the total potential energy

W i :

Anti-plane mechanical displacement

(xy):

Cartesian coordinates

(rθ):

Polar coordinates

\({\varepsilon _{rz}^i,\,\varepsilon _{\theta z}^i}\) :

Shear strains

\({\sigma _{rz}^i,\,\sigma _{\theta z}^i}\) :

Shear stresses

μ j :

Eigenvalue of Hamiltonian matrix

θ 0 :

Angle between electrode plate and the x-axis

ω :

Loading angle

Φ i :

In-plane electric potential

f i :

The vector of generalized external forces

H i :

Hamiltonian operator matrix

J :

symplectic identity matrix

q ip i :

Mutually dual vectors

\({{\bf \Psi}^{i}}\) :

Complete solution in the symplectic space

\({{\bf \Psi}_{\rm P}^i}\) :

Particular solution of the non-homogenous part

\({{\bf {\varphi}}_n^{i(\alpha )},\,{\bf {\varphi}}_n^{i(\beta )}}\) :

Two groups of zero-eigenvalue solutions

\({{\bf {\psi}}_j^{i(\alpha )},\,{\bf {\psi}}_j^{i(\beta )}}\) :

Symmetric and anti-symmetric eigensolution

\({{\bf {\Lambda}}^{{\rm I}},\,{\bf {\Lambda}}^{{\rm P}}}\) :

Matrix of coefficients for the impermeable and permeable cracks

References

  1. Fernandes A., Pouget J.: Analytical and numerical approaches to piezoelectric bimorph. Int. J. Solids Struct. 40, 4331–4352 (2003)

    Article  MATH  Google Scholar 

  2. Li X.F., Tang G.J.: Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech. A Solid 22, 231–242 (2003)

    Article  MATH  Google Scholar 

  3. Li X.F., Fan T.Y.: Mode-III interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials. Arch. Appl. Mech. 71, 703–714 (2001)

    Article  MATH  Google Scholar 

  4. Hu K.Q., Zhong Z., Jin B.: Anti-plane shear crack in a functionally gradient piezoelectric layer bonded to dissimilar half spaces. Int. J. Mech. Sci. 47, 82–93 (2005)

    Article  MATH  Google Scholar 

  5. Narita F., Shindo Y., Watanabe K.: Anti-plane shear crack in a piezoelectric layer bonded to dissimilar half spaces. JSME Int. J. Ser. A Solid Mech. Mater. Eng. 42, 66–72 (1999)

    Article  Google Scholar 

  6. Narita F., Shindo Y.: The interface crack problem for bonded piezoelectric and orthotropic layers under antiplane shear loading. Int. J. Fract. 98, 87–102 (1999)

    Article  Google Scholar 

  7. Singh B.M., Rokne J., Dhaliwal R.S., Vrbik J.: Antiplane crack at the interface of two bonded dissimilar graded piezoelectric materials. Eur. J. Mech. A Solid 27, 346–364 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Singh B.M., Rokne J., Dhaliwal R.S., Vrbik J.: Scattering of anti-plane shear waves by an interface crack between two bonded dissimilar functionally graded piezoelectric materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 1249–1269 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Soh A.K., Fang D.N., Lee K.L.: Analysis of a bi-piezoelectric ceramic layer with an interfacial crack subjected to anti-plane shear and in-plane electric loading. Eur. J. Mech. A Solid 19, 961–977 (2000)

    Article  MATH  Google Scholar 

  10. Beom H., Atluri S.: Conducting cracks in dissimilar piezoelectric media. Int. J. Fract. 118, 285–301 (2002)

    Article  Google Scholar 

  11. Wang B.L., Mai Y.W.: Fracture of a piezoelectric material layer bonded by two elastic layers. Int. J. Eng. Sci. 40, 1697–1727 (2002)

    Article  Google Scholar 

  12. Wang B.L., Mai Y.W., Sun Y.G.: Anti-plane fracture of a functionally graded material strip. Eur. J. Mech. A Solids 22, 357–368 (2003)

    Article  MATH  Google Scholar 

  13. Chue C.H., Yeh C.N.: Angle cracks in two bonded functionally graded piezoelectric material under anti-plane shear. Theor. Appl. Fract. Mech. 53, 233–250 (2010)

    Article  Google Scholar 

  14. Chue C.H., Ou Y.L.: Mode III crack problems for two bonded functionally graded piezoelectric materials. Int. J. Solids Struct. 42, 3321–3337 (2005)

    Article  MATH  Google Scholar 

  15. Ou Y.L., Chue C.H.: Mode III eccentric crack in a functionally graded piezoelectric strip. Int. J. Solids Struct. 43, 6148–6164 (2006)

    Article  MATH  Google Scholar 

  16. Li Y.D., Lee K.Y.: Anti-plane fracture analysis for the weak-discontinuous interface in a non-homogeneous piezoelectric bi-material structure. Eur. J. Mech. A Solid 28, 241–247 (2009)

    Article  MATH  Google Scholar 

  17. Li Y.D., Lee K.Y.: The shielding effect of the imperfect interface on a mode III permeable crack in a layered piezoelectric sensor. Eng. Fract. Mech. 76, 876–883 (2009)

    Article  Google Scholar 

  18. Yong H.D., Zhou Y.H.: Transient anti-plane crack problem for two bonded functionally graded piezoelectric materials. Arch. Appl. Mech. 76, 497–509 (2006)

    Article  MATH  Google Scholar 

  19. Gao C.F., Zhao Y.T., Wang M.Z.: Moving antiplane crack between two dissimilar piezoelectric media. Int. J. Solids Struct. 38, 9331–9345 (2001)

    Article  MATH  Google Scholar 

  20. Zhou Z.G., Wu L.Z., Wang B.: The behavior of a crack in functionally graded piezoelectric/piezomagnetic materials under anti-plane shear loading. Arch. Appl. Mech. 74, 526–535 (2005)

    Article  MATH  Google Scholar 

  21. Zhou Z.G., Du S.Y., Wu L.Z.: Investigation of anti-plane shear behavior of a Griffith permeable crack in functionally graded piezoelectric materials by use of the non-local theory. Compos. Struct. 78, 575–583 (2007)

    Article  Google Scholar 

  22. Zhou Z.G., Wang B.: Non-local theory solution for an anti-plane shear permeable crack in functionally graded piezoelectric materials. Appl. Compos. Mater. 13, 345–367 (2006)

    Article  Google Scholar 

  23. Zhou Z.G., Wu L.Z.: Non-local theory solution for the anti-plane shear of two collinear permeable cracks in functionally graded piezoelectric materials. Int. J. Eng. Sci. 44, 1366–1379 (2006)

    Article  MathSciNet  Google Scholar 

  24. Zhang P.W., Zhou Z.G., Li G.: Interaction of four parallel non-symmetric permeable mode-III cracks with different lengths in a functionally graded piezoelectric material plane. ZAMM 89, 767–788 (2009)

    Article  MATH  Google Scholar 

  25. Kargarnovin M.H., Nasirai C., Torshizian M.R.: Anti-plane stress intensity, energy release and energy density at crack tips in a functionally graded strip with linearly varying properties. Theor. Appl. Fract. Mech. 56, 42–48 (2011)

    Article  Google Scholar 

  26. Govorukha V., Kamlah M.: Asymptotic fields in the finite element analysis of electrically permeable interface cracks in piezoelectric bimaterials. Arch. Appl. Mech. 74, 92–101 (2004)

    Article  MATH  Google Scholar 

  27. Sladek J., Sladek V., Wünsche M., Zhang C.: Analysis of an interface crack between two dissimilar piezoelectric solids. Eng. Fract. Mech. 89, 114–127 (2012)

    Article  Google Scholar 

  28. Sladek J., Sladek V., Zhang C.: A meshless local boundary integral equation method for dynamic anti-plane shear crack problem in functionally graded materials. Eng. Anal. Bound. Elem. 29, 334–342 (2005)

    Article  MATH  Google Scholar 

  29. Yao W.A., Zhong W.X., Lim C.W.: Symplectic Elasticity. World Scientific, Singapore (2009)

    Book  MATH  Google Scholar 

  30. Zhou Z.H., Xu X.S., Leung A.Y.T.: The mode III stress/electric intensity factors and singularities analysis for edge-cracked circular piezoelectric shafts. Int. J. Solids Struct. 46, 3577–3586 (2009)

    Article  MATH  Google Scholar 

  31. Wang J.S., Qin Q.H.: Symplectic model for piezoelectric wedges and its application in analysis of electroelastic singularities. Philos. Mag. 87, 225–251 (2007)

    Article  Google Scholar 

  32. He X.Q., Wang J.S., Qin Q.H.: Saint-Venant decay analysis of FGPM laminates and dissimilar piezoelectric laminates. Mech. Mater. 39, 1053–1065 (2007)

    Article  Google Scholar 

  33. Zhao L., Chen W.Q.: Symplectic analysis of plane problems of functionally graded piezoelectric materials. Mech. Mater. 41, 1330–1339 (2009)

    Article  Google Scholar 

  34. Suo Z., Kuo C.M., Barnett D.M., Willis J.R.: Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40, 739–765 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  35. Xu X.L., Rajapakse R.: On a plane crack in piezoelectric solids. Int. J. Solids Struct. 38, 7643–7658 (2001)

    Article  MATH  Google Scholar 

  36. Leung A.Y.T., Xu X.S., Zhou Z.H., Wu Y.F.: Analytic stress intensity factors for finite elastic disk using symplectic expansion. Eng. Fract. Mech. 76, 1866–1882 (2009)

    Article  Google Scholar 

  37. Pak Y.E.: Crack extension force in a piezoelectric material. J. Appl. Mech. 57, 647–653 (1990)

    Article  MATH  Google Scholar 

  38. Liu S.H., Duan S.J., Zou Z.Z.: The stress intensity factor of a mode-III interface edge crack between two different piezoelectric materials. Eng. Mech. 22, 6–9 (2005) (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C.H., Zhou, Z.H., Xu, X.S. et al. Fracture analysis of mode III crack problems for the piezoelectric bimorph. Arch Appl Mech 84, 1057–1079 (2014). https://doi.org/10.1007/s00419-014-0848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0848-8

Keywords

Navigation