Skip to main content
Log in

Linear stability of viscous flow induced by surface stretching

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The stability of the two-dimensional flow in a semi-infinite fluid induced by the stretching of a planar surface is investigated by a normal-mode linear stability analysis. The base flow is described by Crane’s exact analytical solution of the Navier–Stokes equation. A finite-difference method and a shooting method are implemented to solve the relevant eigenvalue problem for three-dimensional perturbations that vary sinusoidally with arbitrary wave number in the spanwise direction normal to the plane of the flow. The Crane flow is found to be linearly stable, with the least-damped mode arising in the limit of two-dimensional perturbations. Eigenfunctions for the disturbance velocity are presented and discussed for selected values of the transverse wave number. The numerical results for the dispersion relation corresponding to the least-damped mode for each transverse wave number are described by a simple analytical expression. The results of the stability analysis are contextualized by superposing a planar stagnation-point flow toward the stretching surface. As the ratio of the rate of elongation of the stagnation-point flow to the rate of stretching of the surface tends to zero, the dispersion curves smoothly asymptote to those found for the Crane flow. The results for planar stagnation-point flow toward a stationary surface are recovered in the opposite limit. The analysis is extended to account for suction or injection through a porous surface undergoing in-plane stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crane L.J.: Flow past a stretching plate. Zeit. Angew. Math. Phys. 21, 645–647 (1970)

    Article  Google Scholar 

  2. Wang C.Y.: The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27, 1915–1917 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  3. Pozrikidis C.: Introduction to Theoretical and Computational Fluid Dynamics. 2nd edn. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  4. Hiemenz K.: Die Grenzschicht an einem in den gleichförmigen flüssigkeitsstrom eingetauchten geraden kreiszylinder. Dinglers Polyt. J. 326(21), 321–410 (1911)

    Google Scholar 

  5. Homann F.: Der einfluß großer zähigkeit bei der strömung um den zylinder und um die kugel. Z. Angew. Math. Mech. 16(3), 153–164 (1936)

    Article  MATH  Google Scholar 

  6. Sakiadis B.C.: Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 7, 26–28 (1961)

    Article  Google Scholar 

  7. Sakiadis B.C.: Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961)

    Article  Google Scholar 

  8. Wilson S.D.R., Gladwell I.: The stability of a two-dimensional stagnation flow to three-dimensional disturbances. J. Fluid Mech. 84, 517–527 (1978)

    Article  MATH  Google Scholar 

  9. Görtler, H.: In: Gortler, H., Tollmien, W. (eds.) Fifty Years of Boundary Layer Research, p. 304. Vieweg & Sohn (1955)

  10. Hammerlin, G.: In: Gortler, H., Tollmien, W. (eds.) Fifty Years of Boundary Layer Research, p. 315. Vieweg & Sohn (1955)

  11. Brattkus K., Davis S.H.: The linear stability of plane stagnation-point flow against general disturbances. Q. J. Mech. Appl. Math. 44, 135–146 (1991)

    Article  MATH  Google Scholar 

  12. McCormack P.D., Crane L.: Physical Fluid Dynamics. Academic Press, New York (1970)

    Google Scholar 

  13. Rajagopal K.R., Na T.Y., Gupta A.S.: Flow of a viscoelastic fluid over a stretching sheet. Rheol. Acta. 23, 213–215 (1984)

    Article  Google Scholar 

  14. Andersson H.I., Dandapat B.S.: Flow of a power-law fluid over a stretching sheet. Stab. Appl. Anal. Contin. Media 1, 339–347 (1991)

    Google Scholar 

  15. Dandapat B.S., Gupta A.S.: Flow and heat transfer in a viscoelastic fluid over a stretching sheet. Int. J. Non linear Mech. 24, 215–219 (1989)

    Article  MATH  Google Scholar 

  16. Andersson H.I.: MHD flow of a viscoelastic fluid past a stretching surface. Acta Mechanica 95, 227–230 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bhattacharyya S.N., Gupta A.S.: On the stability of viscous flow over a stretching sheet. Q. Appl. Math 18, 359–367 (1985)

    MathSciNet  Google Scholar 

  18. Takhar H.S., Ali M.A., Gupta A.S.: Stability of magnetohydrodynamic flow over a stretching sheet. In: Lielpeteris, J., Moreau, R. (eds) Liquid Metal Hydrodynamics, pp. 465–471. Lkuwer, Dordrecht (1989)

    Chapter  Google Scholar 

  19. Dandapat B.S., Holmdeal L.E., Andersson H.I.: Stability of flow of a viscoelastic fluid over a stretching sheet. Arch. Mech. 46, 829–838 (1994)

    MATH  Google Scholar 

  20. Dandapat B.S., Holmdeal L.E., Andersson H.I.: On the stability of MHD flow of a viscoelastic fluid past a stretching sheet. Acta Mechanica 130, 143–146 (1998)

    Article  MATH  Google Scholar 

  21. Hall P., Malik M.R., Poll D.I.A.: On the stability of an infinite swept attachment line boundary layer. Proc. R. Soc. Lond. A 395, 229–245 (1984)

    Article  MathSciNet  Google Scholar 

  22. Orszag S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 689–703 (1971)

    Article  MATH  Google Scholar 

  23. Pozrikidis C.: Numerical Computation in Science and Engineering. 2nd edn. Oxford University Press, New York (2008)

    MATH  Google Scholar 

  24. Mahapatra T.R., Gupta A.S.: Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transfer 28, 517–521 (2002)

    Article  Google Scholar 

  25. Mahapatra T.R., Gupta A.S.: Stagnation-point flow towards a stretching surface. Can. J. Chem. Eng. 81, 258–263 (2003)

    Article  Google Scholar 

  26. Lok Y.Y., Amin N., Pop I.: Non-orthogonal stagnation point flow towards a stretching sheet. Int. J. Nonlinear Mech. 41, 622–627 (2006)

    Article  Google Scholar 

  27. Wang C.Y.: Stagnation flow towards a shrinking sheet. Int. J. Nonlinear Mech. 43, 377–382 (2008)

    Article  Google Scholar 

  28. Gupta P.S., Gupta A.S.: Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55, 744–746 (1977)

    Article  Google Scholar 

  29. Wang C.Y.: Analysis of viscous flow due to a stretching sheet with surface slip and suction. Nonlinear Anal. Real World Appl. 10, 375–380 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Pozrikidis C., Blyth M.G.: Effect of stretching on interfacial stability. Acta Mechanica 170, 149–162 (2004)

    Article  MATH  Google Scholar 

  31. Davis J.M., Pozrikidis C.: Stretching of a liquid layer underneath a semi-infinite fluid. J. Eng. Math. 79, 35–50 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, J.M., Pozrikidis, C. Linear stability of viscous flow induced by surface stretching. Arch Appl Mech 84, 985–998 (2014). https://doi.org/10.1007/s00419-014-0843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0843-0

Keywords

Navigation