Skip to main content
Log in

A refined asymptotic perturbation method for nonlinear dynamical systems

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a refined asymptotic perturbation method for general nonlinear dynamical systems is proposed for the first time. This method can be considered as an alternative means for the traditional multiple scales method. Moreover, it is easier to be understood and used to carry out higher-order perturbation analysis. In addition, three examples including the Duffing equation, a system with quadratic and cubic nonlinearities to a subharmonic excitation, as well as the coupled van der Pol oscillator with parametrical excitations are investigated to illustrate the validity and usefulness of the proposed technique. The analytical and numerical results show good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh A.H.: Perturbation Methods. Wiley-Interscience, New York (1973)

    MATH  Google Scholar 

  2. Nayfeh A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (2011)

    Google Scholar 

  3. Luongo A., Paolone A.: Multiple scale analysis for divergence-Hopf bifurcation of imperfect symmetric systems. J. Sound Vib. 218, 527–539 (1998)

    Article  MATH  Google Scholar 

  4. Luongo A., Paolone A.: On the reconstitution problem in the multiple time-scale method. Nonlinear Dyn. 19, 135–158 (1999)

    Article  MathSciNet  Google Scholar 

  5. Luongo A., Zulli D.: Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dyn. 67, 71–87 (2012)

    Article  MathSciNet  Google Scholar 

  6. Murdock, J.A.: Perturbations: Theory and Methods. Society for Industrial and Applied Mathematics, Philadelphia (1999)

  7. Hinch E.: Perturbation Methods. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  8. Van Dyke M.: Perturbation Methods in Fluid Mechanics. The Parabolic Press, California (1975)

    MATH  Google Scholar 

  9. Kevorkian J., Cole J.D.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1996)

    Book  MATH  Google Scholar 

  10. Johnson R.S.: Singular Perturbation Theory: Mathematical and Analytical Techniques with Applications to Engineering. Springer, Boston (2005)

    Google Scholar 

  11. Wu J.J.: A generalized harmonic balance method for forced nonlinear oscillations: the subharmonic cases. J. Sound Vib. 159, 503–525 (1992)

    Article  MATH  Google Scholar 

  12. Wu J.J., Chien L.C.: Solutions to a general forced nonlinear oscillations problem. J. Sound Vib. 185, 247–264 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Maccari A.: The non-local oscillator. Il Nuovo Cimento B (1971–1996) 111, 917–930 (1996)

    Article  MathSciNet  Google Scholar 

  14. Maccari A.: Dissipative bidimensional systems and resonant excitations. Int. J. Non-Linear Mech. 33, 713–726 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Maccari A.: A model system for the behavior of two nonlinearly coupled oscillators. J. Sound Vib. 215, 313–330 (1998)

    Article  Google Scholar 

  16. Maccari A.: Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation. Nonlinear Dyn. 15, 329–343 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Maccari A.: The asymptotic perturbation method for nonlinear continuous systems. Nonlinear Dyn. 19, 1–18 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ye M., Sun Y., Zhang W., Zhan X.P., Ding Q.: Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excitation. J. Sound Vib. 287, 723–758 (2005)

    Article  MATH  Google Scholar 

  19. Zhang W., Zhan X.P.: Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness. Nonlinear Dyn. 41, 331–359 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chen L.Q., Chen H., Lim C.W.: Asymptotic analysis of axially accelerating viscoelastic strings. Int. J. Eng. Sci. 46, 976–985 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hao Y.X., Chen L.H., Zhang W., Lei J.: Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J. Sound Vib. 312, 862–892 (2008)

    Article  Google Scholar 

  22. Hao Y.X., Zhang W., Yang J.: Nonlinear oscillation of a cantilever FGM rectangular plate based on third-order plate theory and asymptotic perturbation method. Compos. Part B Eng. 42, 402–413 (2011)

    Article  Google Scholar 

  23. O’Malley R.E. Jr., Kirkinis E.: A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383–410 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. O’Malley R.E. Jr., Kirkinis E.: A survey in mathematics for industry: two-timing and matched asymptotic expansions for singular perturbation problems. Eur. J. Appl. Math. 1, 1–17 (2011)

    MathSciNet  Google Scholar 

  25. Nayfeh A.H.: The response of single degree of freedom systems with quadratic and cubic nonlinearities to a subharmonic excitation. J. Sound Vib. 89, 457–470 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rega G., Benedettini F.: Planar nonlinear oscillations of elastic cables under subharmonic resonance conditions. J. Sound Vib. 132, 367–381 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hosseini S.A.A.: Analytical approximation of weakly nonlinear continuous systems using renormalization group method. Appl. Math. Model. 37, 2102–2114 (2013)

    Article  MathSciNet  Google Scholar 

  28. Tang J., Han F., Xiao H., Wu X.: Amplitude control of a limit cycle in a coupled van der Pol system. Nonlinear Anal. Theory Methods Appl. 71, 2491–2496 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kamel M.: Nonlinear behavior of van der Pol oscillators under parametric and harmonic excitations. Phys. Scr. 79, 1–8 (2009)

    Article  Google Scholar 

  30. Bi Q.S.: Dynamical analysis of two coupled parametrically excited van der Pol oscillators. Int. J. Non-Linear Mech. 39, 33–54 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. Maccari A.: Parametric excitation for two internally resonant van der Pol oscillators. Nonlinear Dyn. 27, 367–383 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. Maurini C., Pouget J., dell’Isola F.: On a model of layered piezoelectric beams including transverse stress effect. Int. J. Solids Struct. 41, 4473–4502 (2004)

    Article  MATH  Google Scholar 

  33. Hao Y., Zhang W., Yang J.: Nonlinear dynamics of cantilever FGM cylindrical shell under 1: 2 internal resonance relations. Mech. Adv. Mater. Struct. 20, 819–833 (2013)

    Article  Google Scholar 

  34. Misra A., Chang C.S.: Effective elastic moduli of heterogeneous granular solids. Int. J. Solids Struct. 30, 2547–2566 (1993)

    Article  MATH  Google Scholar 

  35. dell’Isola F., Seppecher P., Madeo A.: How contact interactions may depend on the shape of Cauchy cuts in Nth gradient continua: approach “à la D’Alembert”. Zeitschrift für angewandte Mathematik und Physik 63, 1119–1141 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Hu, H.L., Qian, Y.H. et al. A refined asymptotic perturbation method for nonlinear dynamical systems. Arch Appl Mech 84, 591–606 (2014). https://doi.org/10.1007/s00419-014-0819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-014-0819-0

Keywords

Navigation