Skip to main content
Log in

Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

On the basis of the modified strain gradient elasticity theory, the free vibration characteristics of curved microbeams made of functionally graded materials (FGMs) whose material properties vary in the thickness direction are investigated. A size-dependent first-order shear deformation beam model is developed containing three internal material length scale parameters to incorporate small-scale effect. Through Hamilton’s principle, the higher-order governing equations of motion and boundary conditions are derived. Natural frequencies of FGM curved microbeams corresponding to different mode numbers are evaluated for over a wide range of material property gradient index, dimensionless length scale parameter and aspect ratio. Moreover, the results obtained via the present non-classical first-order shear deformation beam model are compared with those of degenerated beam models based on the modified couple stress and the classical theories. It is found that the difference between the natural frequencies predicted by the various beam models is more significant for lower values of dimensionless length scale parameter and higher values of mode number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chong A.C.M., Lam D.C.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14, 4103–4110 (1999)

    Article  Google Scholar 

  2. Fleck N.A., Muller G.M., Ashby M.F., Hutchinson J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  3. Stolken J.S., Evans A.G.: Microbend test method for measuring the plasticity length scale. Acta Metall. Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  4. Ansari R., Sahmani S., Arash B.: Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett. A 375, 53–62 (2010)

    Article  Google Scholar 

  5. Ansari R., Gholami R., Darabi M.A.: Thermal buckling analysis of embedded single-walled carbon nanotubes with arbitrary boundary conditions using the nonlocal Timoshenko beam theory. J. Thermal Stresses 34, 1271–1281 (2011)

    Article  Google Scholar 

  6. Asghari M., Kahrobaiyan M.H., Rahaeifard M., Ahmadian M.T.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81, 863–874 (2012)

    Article  Google Scholar 

  7. Ansari R., Rouhi H., Sahmani S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Article  Google Scholar 

  8. Akgöz B., Civalek Ö.: Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2012)

    Article  Google Scholar 

  9. Ansari R., Gholami R., Darabi M.A.: A nonlinear Timoshenko beam formulation based on strain gradient theory. J. Mech. Mater. Struct. 7(2), 195–211 (2012)

    Article  Google Scholar 

  10. Papargyri-Beskou S., Beskos D.E.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  11. Aydogdu M., Taskin V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28, 1651–1656 (2007)

    Article  Google Scholar 

  12. Liu Y.P., Reddy J.N.: A nonlocal curved beam model based on a modified couple stress theory. Int. J. Struct. Stab. Dyn. 11, 495–512 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fleck N.A., Hutchinson J.W.: Phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lam D.C.C., Yang F., Chong A.C.M. et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  15. Kong S., Zhou S., Nie Z., Wang K.: Static and dynamic analysis of microbeams based on strain gradient elasticity theory. Int. J. Eng. Sci. 47, 487–498 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang B., Zhao J., Zhou S.: A micro scale Timoshenko beam model based on strain gradient elasticity theory. Eur. J. Mech. A/Solids 29, 591–599 (2010)

    Article  Google Scholar 

  17. Ansari R., Gholami R., Sahmani S.: Free vibration of size-dependent functionally graded microbeams based on a strain gradient theory. Compos. Struct. 94, 221–228 (2011)

    Article  Google Scholar 

  18. Ansari R., Gholami R., Sahmani S.: Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory. ASME J. Comput. Nonlinear Dyn. 7, 031010 (2012)

    Article  Google Scholar 

  19. Mindlin R.D., Tiersten H.F.: Effects of couple-stresses in linear elasticity. Arch. Ratl. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  20. Koiter W.T.: Couple stresses in the theory of elasticity I and II. Proc. Koninklijke Nederlandse Akademie van Wetenschappen (B) 67, 17–44 (1964)

    MATH  Google Scholar 

  21. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solid-I. Int. J. Eng. Sci. 2, 189–203 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  22. Eringen A.C., Suhubi E.S.: Nonlinear theory of simple microelastic solid-II. Int. J. Eng. Sci. 2, 389–404 (1964)

    Article  MathSciNet  Google Scholar 

  23. Mindlin R.D.: Micro-structure in linear elasticity. Arch. Ratl. Mech. Anal. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Toupin R.A.: Theory of elasticity with couple stresses. Arch. Ratl. Mech. Anal. 17, 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mindlin R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  26. Mindlin R.D., Eshel N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)

    Article  MATH  Google Scholar 

  27. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  28. Vardoulaksi I., Exadaktylos G., Kourkoulis S.K.: Bending of marble with intrinsic length scales: a gradient theory with surface energy and size effects. J. Phys. IV 8, 399–406 (1998)

    Google Scholar 

  29. Yang F., Chong A.C.M., Lam D.C.C. et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  30. Witvrouw, A., Mehta, A.: The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 4992-493, 255–260 (2005)

    Google Scholar 

  31. Hasanyan D.J., Batra R.C., Harutyunyan R.C.: Pull-in instabilities in functionally graded microthermoelectromechanical systems. J. Thermal Stress. 31, 1006–1021 (2008)

    Article  Google Scholar 

  32. Fu Y.Q., Du H.J., Huang W.M., Zhang S., Hu M.: TiNi-based thin films in MEMS applications: a review. J. Sens. Actuators A 112, 395–408 (2004)

    Article  Google Scholar 

  33. Lee Z., Ophus C., Fischer L.M., Nelson-Fitzpatrick N., Westra K.L., Evoy S.: Metallic NEMS components fabricated from nanocomposite Al-Mo films. Nanotechnology 17, 3063–3070 (2006)

    Article  Google Scholar 

  34. Timoshenko S.P., Goodier J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  35. Ganapathi M.: Dynamic stability characteristics of functionally graded materials shallow spherical shells. Compos. Struct. 79, 338–343 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gholami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, R., Gholami, R. & Sahmani, S. Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory. Arch Appl Mech 83, 1439–1449 (2013). https://doi.org/10.1007/s00419-013-0756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0756-3

Keywords

Navigation