Skip to main content
Log in

Application of the random eigenvalue problem in forced response analysis of a linear stochastic structure

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The random eigenvalue problem arises in frequency and mode shape determination for a linear system with uncertainties in structural properties. Among several methods of characterizing this random eigenvalue problem, one computationally fast method that gives good accuracy is a weak formulation using polynomial chaos expansion (PCE). In this method, the eigenvalues and eigenvectors are expanded in PCE, and the residual is minimized by a Galerkin projection. The goals of the current work are (i) to implement this PCE-characterized random eigenvalue problem in the dynamic response calculation under random loading and (ii) to explore the computational advantages and challenges. In the proposed method, the response quantities are also expressed in PCE followed by a Galerkin projection. A numerical comparison with a perturbation method and the Monte Carlo simulation shows that when the loading has a random amplitude but deterministic frequency content, the proposed method gives more accurate results than a first-order perturbation method and a comparable accuracy as the Monte Carlo simulation in a lower computational time. However, as the frequency content of the loading becomes random, or for general random process loadings, the method loses its accuracy and computational efficiency. Issues in implementation, limitations, and further challenges are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghanem R., Spanos P.D.: Stochastic Finite Elements: A Spectral Approach, Revised Edition. Dover, New York (2003)

    Google Scholar 

  2. Collins J.D., Thomson W.T.: The eigenvalue problem for structural systems with statistical properties. AIAA J. 7(4), 642–648 (1969)

    Article  MATH  Google Scholar 

  3. Shinozuka M., Astill C.J.: Random eigenvalue problems in structural analysis. AIAA J. 10(4), 456–462 (1972)

    Article  MATH  Google Scholar 

  4. Kleiber M., Hien T.D.: The Stochastic Finite Element Method: Basic Perturbation Technique and Computer Implementation. Wiley, New York (1992)

    MATH  Google Scholar 

  5. Graham L., Deodatis G.: Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties. Probab. Eng. Mech. 16(1), 11–29 (2001)

    Article  Google Scholar 

  6. Hasselman T.: Quantification of uncertainty in structural dynamics models. J. Aerosp. Eng. 14(4), 158–165 (2001)

    Article  Google Scholar 

  7. Vom Scheidt J., Purkert W.: Random Eigenvalue Problems. North Holland, New York (1983)

    Google Scholar 

  8. Ghosh D., Ghanem R., Red-Horse J.: Analysis of eigenvalues and modal interaction of stochastic systems. AIAA J. 43(10), 2196–2201 (2005)

    Article  Google Scholar 

  9. Ghanem R., Ghosh D.: Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition. Int. J. Numer. Methods Eng. 72(4), 486–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Verhoosel C.V., Gutiérrez M.A., Hulshoff S.J.: Iterative solution of the random eigenvalue problem with application to spectral stochastic finite element systems. Int. J. Numer. Methods Eng. 68(4), 401–424 (2006)

    Article  MATH  Google Scholar 

  11. Pradlwarter H.J., Schuëller G.I., Székely G.S.: Random eigenvalue problems for large systems. Comput. Struct. 80, 2415–2424 (2002)

    Article  Google Scholar 

  12. Adhikari S.: Joint statistics of natural frequencies of stochastic dynamic systems. Comput. Mech. 40(4), 739–752 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rahman S.: Stochastic dynamic systems with complex-valued eigensolutions. Int. J. Numer. Methods Eng. 71, 963–986 (2007)

    Article  MATH  Google Scholar 

  14. Wojtkiewicz, S.F., Gaurav, : Efficient modal analysis of systems with local stiffness uncertainties. Int. J. Numer. Methods Eng. 80(6–7), 1007–1024 (2009)

  15. Ibrahim R.A.: Structural dynamics with parameter uncertainties. Appl. Mech. Rev. 40(3), 309–328 (1987)

    Article  Google Scholar 

  16. Manohar C.S., Ibrahim R.A.: Progress in structural dynamics with stochastic parameter variations: 1987–1998. Appl. Mech. Rev. 52(5), 177–197 (1999)

    Article  Google Scholar 

  17. Schuëller G.I., Pradlwarter H.J.: Uncertain linear systems in dynamics: retrospective and recent developments by stochastic approaches. Eng. Struct. 31, 2507–2517 (2009)

    Article  Google Scholar 

  18. Soize C., Ghanem R.: Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J. Sci. Comput. 26(2), 395–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xiu D., Karniadakis G.: Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187(1), 137–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stefanou G.: The stochastic finite element method: past, present and future. Comput. Methods Appl. Mech. Eng. 198, 1031–1051 (2009)

    Article  MATH  Google Scholar 

  21. Ghosh D., Ghanem R.: An invariant subspace-based approach to the random eigenvalue problem of systems with clustered spectrum. Int. J. Numer. Methods Eng. 91(4), 378–396 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ghosh D., Farhat C.: Strain and stress computation in stochastic finite element methods. Int. J. Numer. Methods Eng. 74(8), 1219–1239 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sepahvand K, Marburg S, Hardtke H.-J.: Stochastic free vibration of orthotropic plates using generalized polynomial chaose xpansion. J. Sound Vib. 331, 167–179 (2012)

    Article  Google Scholar 

  24. Gupta I.D., Joshi R.G.: Response spectrum superposition for structures with uncertain properties. J. Eng. Mech. 127(3), 233–241 (2001)

    Article  Google Scholar 

  25. Adhikari S., Manohar C.S.: Dynamic analysis of framed structures with statistical uncertainties. Int. J. Numer. Methods Eng. 44, 1157–1178 (1999)

    Article  MATH  Google Scholar 

  26. Chen P.C., Soroka W.W.: Multi-degree dynamic response of a system with statistical properties. J. Sound Vib. 37(4), 547–556 (1974)

    Article  MATH  Google Scholar 

  27. Cacciola P., Colajanni P., Muscolino G.: A modal approach for the evaluation of the response sensitivity of structural systems subjected to non-stationary random processes. Comput. Methods Appl. Mech. Eng. 194, 4344–4361 (2005)

    Article  MATH  Google Scholar 

  28. Shinozuka M.: Structural response variability. J. Eng. Mech. 113(6), 825–842 (1987)

    Article  Google Scholar 

  29. Spencer B.F., Bergman L.A.: On the numerical solution of the Fokker-Planck equation for nonlinear stochastic systems. Nonlinear Dyn. 4, 357–372 (1993)

    Article  Google Scholar 

  30. Johnson E.A., Proppe C., Spencer B.F. Jr, Bergman L.A., Székely G.S., Schuëller G.I.: Parallel processing in computational stochastic dynamics. Probab. Eng. Mech. 18, 37–60 (2003)

    Article  Google Scholar 

  31. Martens W., von Wagner U., Mehrmann V.: Calculation of high-dimensional probability density functions of stochastically excited nonlinear mechanical systems. Nonlinear Dyn. 67, 2089–2099 (2012)

    Article  MATH  Google Scholar 

  32. Er G.: Probabilistic solutions to nonlinear random vibrations of multi-degree-of-freedom systems. Appl. Mech. 67(2), 355–359 (2000)

    Article  MATH  Google Scholar 

  33. Feuersänger, C.: An efficient sparse-grid method for the high-dimensional Fokker-Planck equation. In: International Congress on Industrial and Applied Mathematics (ICIAM), Zürich (2007)

  34. von Wagner U., Wedig W.V.: On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions. Nonlinear Dyn. 21, 289–306 (2000)

    Article  MATH  Google Scholar 

  35. Kozin F.: On the probability densities of the output of some random systems. J. Appl. Mech. ASME 28(2), 161–164 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. Grigoriu M.: Linear random vibration by stochastic reduced-order models. Int. J. Numer. Methods Eng. 82, 1537–1559 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Xu J., Chen J., Li J.: Probability density evolution analysis of engineering structures via cubature points. Comput. Mech. 50, 135–156 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Igusa T., Der Kiureghian A.: Response of uncertain systems to stochastic excitation. J. Eng. Mech. 114(5), 812–832 (1988)

    Article  Google Scholar 

  39. Gong G., Dunne J.F.: Efficient exceedance probability computation for randomly uncertain nonlinear structures with periodic loading. J. Sound Vib. 330, 2354–2368 (2011)

    Article  Google Scholar 

  40. Au S.-K., Beck J.L.: Estimation of small failure probabilities in high dimensions by subset simulation. Probab. Eng. Mech. 16, 263–277 (2001)

    Article  Google Scholar 

  41. Goller B., Pradlwarter H.J., Schuëller G.I.: Reliability assessment in structural dynamics. J. Sound Vib. 332, 2488–2499 (2013)

    Article  Google Scholar 

  42. Tootkaboni M., Graham-Brady L.: Stochastic direct integration schemes for dynamic systems subjected to random excitations. Probab. Eng. Mech. 25, 163–171 (2010)

    Article  Google Scholar 

  43. Nair, P.B.: Stochastic subspace projection schemes for dynamic analysis of uncertain systems. In: Proceedings of the IUTAM Symposium on the Vibration Analysis of Structures with Uncertainties, Russia, July 59 (2009)

  44. Chevreuil, M., Nouy, A.: Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics. Int. J. Numer. Methods Eng. 89, 241–168 (2012)

    Google Scholar 

  45. Jensen H., Iwan W.D.: Response of systems with uncertain parameters to stochastic excitation. J. Eng. Mech. 118(5), 1012–1025 (1992)

    Article  Google Scholar 

  46. Katafygiotis L.S., Papadimitriou C.: Dynamic response variability of structures with uncertain properties. Earthq. Eng. Struct. Dyn. 25, 775–793 (1996)

    Article  Google Scholar 

  47. Sutter T.R., Camarda C.J., Walsh J.L., Adelmans H.M.: Comparison of several methods for calculating vibration mode shape derivatives. AIAA J. 26(12), 1506–1511 (1988)

    Article  Google Scholar 

  48. Nelson R.B.: Simplified calculation of eigenvector derivatives. AIAA J. 14(9), 1201–1205 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  49. Spanos P.D., Beer M., Red-Horse J.: Karhunen-Loéve expansion of stochastic processes with a modified exponential covariance kernel. J. Eng. Mech. 133(7), 773–779 (2007)

    Article  Google Scholar 

  50. Van Trees H.L.: Detection, Estimation and Modulation Theory, Part I. Wiley, New York (2001)

    Book  Google Scholar 

  51. Yang T.Y.: Finite Element Structural Analysis. Prentice-Hall, Englewood Cliffs (1986)

    Google Scholar 

  52. Pettit C.L., Beran P.S.: Spectral and multiresolution wiener expansions of oscillatory stochastic processes. J. Sound Vib. 294, 752–779 (2006)

    Article  Google Scholar 

  53. Abbas A.M., Manohar C.S.: Reliability-based critical earthquake load models. Part 1: linear structures. J. Sound Vib. 28, 865–882 (2005)

    Article  Google Scholar 

  54. Zentner, I., Poirion, F.: Enrichment of seismic ground motion databases using karhunenGÇôloéve expansion. Earthq. Eng. Struct. Dyn. (2012). doi:10.1002/eqe.2166

  55. Schenk C.A., Schuëller G.I.: Uncertainty Assessment of Large Finite Element Systems. Springer, Berlin (2005)

    MATH  Google Scholar 

  56. Doostan A., Ghanem R., Red-Horse J.: Stochastic model reduction for chaos representations. Comput. Methods Appl. Mech. Eng. 196, 3951–3966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Bieri M., Schwab C.: Sparse high order fem for elliptic spdes. Comput. Methods Appl. Mech. Eng. 198, 1149–1170 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  58. Smoljak S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4, 240–243 (1963)

    Google Scholar 

  59. Keese, A., Matthies, H.G.: Numerical methods and smolyak quadrature for nonlinear stochastic partial differential equations. In: Informatikbericht 2003-5, Institute of Scientific Computing, Department of Mathematics and Computer Science, Technische Universitt Braunschweig, Brunswick (2003)

  60. Xiu D.: Fast numerical methods for stochastic computations: a review. Commun. Comput. Phys. 5(2–4), 242–272 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debraj Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D. Application of the random eigenvalue problem in forced response analysis of a linear stochastic structure. Arch Appl Mech 83, 1341–1357 (2013). https://doi.org/10.1007/s00419-013-0750-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-013-0750-9

Keywords

Navigation