Archive of Applied Mechanics

, Volume 83, Issue 6, pp 817–830 | Cite as

Dynamic characteristics of a rub-impact rotor-bearing system for hydraulic generating set under unbalanced magnetic pull

Original

Abstract

Electromagnetic and mechanical forces are main reasons resulting in vibrations in hydraulic generating set. The non-symmetric air-gap between the rotor and stator creates an attraction force called unbalanced magnetic pull (UMP). The UMP can produce large oscillations which will be dangerous to the machines. In this paper, the nonlinear dynamic characteristics of a rotor-bearing system with rub-impact for hydraulic generating set under the UMP are studied. The rubbing model is established based on the classic impact theory. Through the numerical calculation, the excitation current, mass eccentricity, stiffness of shaft and radial stiffness of stator are used as control parameters to investigate their effect on the system, by means of bifurcation diagrams, Poincaré maps, trajectories and frequency spectrums. Various nonlinear phenomena including periodic, quasi-periodic and chaotic motions are observed. The results reveal that the UMP has significant influence in the response of the rotor system that the continuous increase in the excitation current induces the alternation of quasi-periodic and chaotic motions, the co-occurrence of oil whip and rub in a wide excitation range aggravates the vibration and leads to the instability of the system. In addition, the large eccentricity and radial stiffness of stator, as well as the small stiffness of shaft may lead to the occurrence of full annular rubbing while increasing the stiffness of the shaft can play an important role of suppressing the chaotic motion, reducing the vibration and improving stability of the system.

Keywords

Hydraulic generating set Rotor-bearing system Rub-impact Unbalanced magnetic pull Nonlinear dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wen B.C.: Survey concerning in recent research of nonlinear dynamics of rotating machinery with faults. J. Vib. Eng. 17(s), 1–5 (2004)Google Scholar
  2. 2.
    Perers R., Lundin U., Leijon M.: Saturation effects on unbalanced magnetic pull in a hydroelectric generator with an eccentric rotor. IEEE Trans. Magn. 43(10), 3884–3890 (2007)CrossRefGoogle Scholar
  3. 3.
    Huang Z.W., Zhou J.Z., Kou P.G. et al.: Nonlinear electromagnetic vibration of rotor bearing system of hydropower unit. J. Huazhong Univ. Sci. Tech. (Nat. Sci.) 38(7), 20–24 (2010)Google Scholar
  4. 4.
    Fu Z.Q., Li J.J.: Determination of load field current for synchronous machines. Large Electr. Mach. Hydraul. Turbine 5, 11–15 (2003)Google Scholar
  5. 5.
    Li, Y.G., Li, H.M., Zhao, H.: The new criterion on inter turn short-circuit fault diagnose of steam turbine generator rotor windings. Chin. Soc. Electr. Eng. 23(6), 112–116, 119 (2003)Google Scholar
  6. 6.
    Zhu Y.B., Hong S.S.: Vibration analysis of shaft No. 10 for generator No. 1 in Pingwei power plant. Electr. Power 33(10), 45–47 (2000)Google Scholar
  7. 7.
    Ma Z.Y., Dong Y.X.: Dynamics of Water Turbine Generator Set. Dalian University of Technology Press, Dalian (2003)Google Scholar
  8. 8.
    Cameron J.R., Thomson W.T., Dow A.B.: Vibration and current monitoring for detecting airgap eccentricity in large induction motors. Proc. IEE B 133(3), 155–163 (1986)CrossRefGoogle Scholar
  9. 9.
    Yu K.S.: The study and improvement for the contact fault between the air gap of the stator and rotor of the bulb tubular hydrogenerators. Large Electr. Mach. Hydraul. Turbine 3, 8–16 (1996)Google Scholar
  10. 10.
    Pollock G.B., Lyles J.F.: Vertical hydraulic generators experience with dynamic air gap monitoring. IEEE Trans. Energy Convers. 7(4), 660–668 (1992)CrossRefGoogle Scholar
  11. 11.
    Beatty R.F.: Differentiating rotor response due to radial rubbing. J. Vib. Acoust. Stress Reliab. Des. 107(2), 151–160 (1985)CrossRefGoogle Scholar
  12. 12.
    Ehrich F.F.: Some observations of chaotic vibration phenomena in high-speed rotordynamics. J. Vib. Acoust. 113(1), 50–57 (1991)CrossRefGoogle Scholar
  13. 13.
    Muszynska A., Goldman P.: Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. Chaos Solitons Fractals 5(9), 1683–1704 (1995)CrossRefGoogle Scholar
  14. 14.
    Lin F., Schoen M.P., Korde U.A.: Numerical investigation with rub-related vibration in rotating machinery. J. Vib. Control 7(6), 833–848 (2001)MATHCrossRefGoogle Scholar
  15. 15.
    Chu F., Zhang Z.: Bifurcation and chaos in a rub-impact Jeffcott rotor system. J. Sound Vib. 210(1), 1–18 (1998)CrossRefGoogle Scholar
  16. 16.
    Chu F.L., Lu W.X.: Experimental observation of nonlinear vibrations in a rub-impact rotor system. J. Sound Vib. 283, 621–643 (2005)CrossRefGoogle Scholar
  17. 17.
    Dai X.J., Dong J.P., Zhang X.J.: Effects of unbalances on the rotor/stop rubbing. Chin. J. Mech. Eng. 37(6), 90–93 (2001)CrossRefGoogle Scholar
  18. 18.
    Feng Z.C., Zhang X.Z.: Rubbing phenomena in rotor–stator contact. Chaos Solitons Fractals 14(2), 257–267 (2002)MATHCrossRefGoogle Scholar
  19. 19.
    Qin W.Y., Chen G.R., Meng G.: Nonlinear responses of a rub-impact overhung rotor. Chaos Solitons Fractals 19(5), 1161–1172 (2004)MATHCrossRefGoogle Scholar
  20. 20.
    Zhang W.M., Meng G.: Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sens. Actuators A 127(1), 163–178 (2006)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Shen X.Y., Jia J.H., Zhao M.: Effect of parameters on the rubbing condition of an unbalanced rotor system with initial permanent deflection. Arch. Appl. Mech. 77(12), 883–892 (2007)MATHCrossRefGoogle Scholar
  22. 22.
    Shen X.Y., Jia J.H., Zhao M.: Numerical analysis of a rub-impact rotor-bearing system with mass unbalance. J. Vib. Control 13(12), 1819–1834 (2007)MATHCrossRefGoogle Scholar
  23. 23.
    Chang-Jian C.W., Chen C.K.: Chaos of rub-impact rotor supported by bearings with nonlinear suspension. Tribol. Int. 42(3), 426–439 (2009)CrossRefGoogle Scholar
  24. 24.
    Cao J.Y., Ma C.B., Jiang Z.D. et al.: Nonlinear dynamic analysis of fractional order rub-impact rotor system. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1443–1463 (2011)CrossRefGoogle Scholar
  25. 25.
    An X.L., Zhou J.J., Xiang X.Q. et al.: Dynamic response of a rub-impact rotor system under axial thrust. Arch. Appl. Mech. 79(11), 1009–1018 (2009)MATHCrossRefGoogle Scholar
  26. 26.
    Gustavsson R.K., Aidanpää J.: Evaluation of impact dynamics and contact forces in a hydropower rotor due to variations in damping and lateral fluid forces. Int. J. Mech. Sci. 51(9–10), 653–661 (2009)CrossRefGoogle Scholar
  27. 27.
    Huang Z.W., Zhou J.J., Yang M.Q. et al.: Vibration characteristics of a hydraulic generator unit rotor system with parallel misalignment and rub-impact. Arch. Appl. Mech. 81(7), 829–838 (2011)CrossRefGoogle Scholar
  28. 28.
    Jordan H., Schroeder R.D., Seinsch H.O.: Zur Berechnung einseitig magnetischer Zugkräfte in Drehfeldmaschinen. Archiv fur Elektrotechnik 63(2), 117–124 (1981)CrossRefGoogle Scholar
  29. 29.
    Ohishi H., Sakabe S., Tsumagari K. et al.: Radial magnetic pull in salient pole machines with eccentric rotors. IEEE Trans. Energy Convers. EC-2(3), 439–443 (1987)CrossRefGoogle Scholar
  30. 30.
    Guo D., Chu F., Chen D.: The unbalanced magnetic pull and its effects on vibration in a three-phase generator with eccentric rotor. J. Sound Vib. 254(2), 297–312 (2002)CrossRefGoogle Scholar
  31. 31.
    Adiletta G., Guido A.R., Rossi C.: Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dyn. 10(3), 251–269 (1996)CrossRefGoogle Scholar
  32. 32.
    Xu S.Z.: Electromechanics. Chinese Machine Press, Beijing (1988)Google Scholar
  33. 33.
    Pennacchi P., Frosini L.: Dynamical behaviour of a three-phase generator due to unbalanced magnetic pull. IEE Proc. Electr. Power Appl. 152(6), 1389–1400 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Faculty of Infrastructure Engineering, School of Hydraulic EngineeringDalian University of TechnologyDalianChina
  2. 2.Institute of Foundation EngineeringWater Conservancy and Hydropower Science Research Institute of Liaoning ProvinceShenyangChina

Personalised recommendations