Skip to main content
Log in

Design and test of a friction damper to reduce engine vibrations on a space launcher

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Space launchers are submitted to complex vibration environments and this can impact the payload it is carrying. Ensuring the protection of the payload therefore requires the addition of a secondary system. In this paper, a rapid design method for the dimensioning of a friction damper is developed, based on the equivalent energy dissipation with that of a viscous damper. A friction damper is designed and a prototype is built. The friction damper is first characterised alone and it is then mounted inside a scale model of a launcher last stage. The friction damper is adequately modelled by a spring in series with a friction element. The damper prototype proves to efficiently damp the rocket engine vibrations, and the design method used for dimensioning the friction damper gives a good approximation for the optimal sliding force of the damper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

W c :

Dissipated energy per cycle in the viscous damper

W f :

Dissipated energy per cycle in the friction damper

k f :

Stiffness of the friction damper

F g :

Sliding force of the friction damper

p :

Pressure in the hydraulic jack of the friction damper prototype

f :

Excitation frequency

u 0 :

Excitation amplitude

F(t):

Temporal signal of the tangential force in the friction damper

u(t):

Temporal signal of the relative displacement across the friction damper

T :

Period of the temporal signals (inverse of f)

A :

Area of the force–displacement (Fu) curve

A + :

Area of the force–displacement curve above F = 0

A−:

Area of the force–displacement curve below F = 0

F n :

Normal force in the friction damper

F gp :

Positive sliding force of the friction damper

F gn :

Negative sliding force of the friction damper

μ :

Friction coefficient of the brake lining

A trap :

Area of the absolute value of the force signal F(t)

τ :

Ratio of sliding time to oscillation period of the friction damper

References

  1. Al Sayed, B., Chatelet, E., Baguet, S., Jacquet-Richardet, G.: Dissipated energy and boundary condition effects associated to dry friction on the dynamics of vibrating structures. Mech. Mach. Theory 46(4), 479–491. (2011). doi:10.1016/j.mechmachtheory.2010.11.014. url:http://www.sciencedirect.com/science/article/pii/S0094114X10002119

  2. Brizard, D., Besset, S., Jézéquel, L., Troclet, B.: Determinantal method for locally modified structures. application to the vibration damping of a space launcher. Comput. Mech. 1–14 (2012). doi:10.1007/s00466-012-0695-9. url:http://www.springerlink.com.gate6.inist.fr/content/5k41075228kr6x44/abstract/

  3. Courtney-Pratt, J.S., Eisner, E.: The effect of a tangential force on the contact of metallic bodies. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 238(1215), 529–550 (1957). doi:10.1098/rspa.1957.0016. url:http://rspa.royalsocietypublishing.org/content/238/1215/529

  4. Golafshani, A., Gholizad, A.: Friction damper for vibration control in offshore steel jacket platforms. J. Constr. Steel Res. 65(1), 180–187 (2009). doi:10.1016/j.jcsr.2008.07.008. url:http://www.sciencedirect.com/science/article/pii/S0143974X08001727

  5. Guglielmino, E., Edge, K.A.: A controlled friction damper for vehicle applications. Control Eng. Pract. 12(4), 431–443 (2004). doi:10.1016/S0967-0661(03)00119-9. url:http://www.sciencedirect.com/science/article/pii/S0967066103001199

  6. Guglielmino, E., Sireteanu, T., Stammers, C.W., Gheorghe, G., Giuclea, M.: Friction dampers. In: Semi-active Suspension Control, pp. 99–163. Springer, London. http://www.springerlink.com.gate6.inist.fr/content/l66g38305h3u5640/abstract/ (2008)

  7. Hinrichs, N., Oestreich, M., Popp, K.: On the modelling of friction oscillators. J. Sound Vib. 216(3), 435–459 (1998). doi:10.1006/jsvi.1998.1736. url:http://www.sciencedirect.com/science/article/pii/S0022460X98917369

    Google Scholar 

  8. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—part I: mechanics of contact and friction. Appl. Mech. Rev. 47(7), 209 (1994). doi:10.1115/1.3111079. url:http://link.aip.org/link/AMREAD/v47/i7/p209/s1&Agg=doi

  9. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. App. Mech. Rev. 47(7), 227 (1994). doi:10.1115/1.3111080. url:http://link.aip.org/link/AMREAD/v47/i7/p227/s1&Agg=doi

  10. Kim, J., Choi, H., Min, K.: Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures. Struct. Des. Tall Special Build. 20(4), 515–537 (2011). doi:10.1002/tal.563. url:http://onlinelibrary.wiley.com/doi/10.1002/tal.563/abstract;jsessionid=43B58DC92AC3F26D69FC6A603215E8A8.d02t02

  11. Laxalde D., Thouverez, F., Sinou, J., Lombard, J.: Qualitative analysis of forced response of blisks with friction ring dampers. Eur. J. Mech. A Solids 26(4), 676–687 (2007). doi:10.1016/j.euromechsol.2006.10.002. url:http://www.sciencedirect.com/science/article/pii/S0997753806001136

    Google Scholar 

  12. Mirtaheri, M., Zandi, A.P., Samadi, S.S., Samani, H.R.: Numerical and experimental study of hysteretic behavior of cylindrical friction dampers. Eng. Struct. 33(12), 3647–3656 (2011). doi:10.1016/j.engstruct.2011.07.029. url:http://www.sciencedirect.com/science/article/pii/S0141029611003130

  13. Mualla, I.H., Belev, B.: Performance of steel frames with a new friction damper device under earthquake excitation. Eng. Struct. 24(3), 365–371 (2002). doi:10.1016/S0141-0296(01)00102-X. url:http://www.sciencedirect.com/science/article/pii/S014102960100102X

  14. Rittweger, A., Albus, J., Hornung, E., Öry, H., Mourey, P.: Passive damping devices for aerospace structures. Acta Astronautica 50(10), 597–608 (2002). doi:10.1016/S0094-5765(01)00220-X. url:http://www.sciencedirect.com/science/article/B6V1N-44TV6SP-3/2/e3b00ba0563b085408c247a18a965c43

    Google Scholar 

  15. Romeuf, T., Le~Gallo, V.: ARIANE 5 New Upper Composite Including a Non Linear Damper. Prediction of the Dynamic Behaviour During On-ground Tests and Flights. EUCASS conference, Moscow (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Brizard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brizard, D., Besset, S., Jézéquel, L. et al. Design and test of a friction damper to reduce engine vibrations on a space launcher. Arch Appl Mech 83, 799–815 (2013). https://doi.org/10.1007/s00419-012-0718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0718-1

Keywords

Navigation