Archive of Applied Mechanics

, Volume 83, Issue 5, pp 783–798 | Cite as

A novel method for slant crack detection in rotors based on turning in two directions



This paper presents a novel way to detect fatigue slant cracks in rotors based on theoretical discussion. Hence, the dynamic behaviour of a Jeffcott rotor system with a mid-span slant crack under arbitrary crack orientations is studied. First, using concepts of fracture mechanics, the flexibility matrix and subsequently the system’s stiffness matrix are calculated. A symmetric relation for a global stiffness matrix is presented and proved. Next, the motion equations of the system that are obtained in four directions, two transverse, one torsional and one longitudinal, are solved using the Runge–Kutta numerical method. The characteristics of crack orientations for angles greater than 90° (transverse crack) are investigated in detail and their influence on the elements of the crack compliance matrix is presented. Also, slant crack characteristics with complementary angles are compared to each other. It is shown that the difference between cracked systems with complementary angles is only in 3rd row (3rd column) of the crack compliance matrix, and also it is shown that due to the presence of a slant crack, the system responses in forward and backward motion are different. Using the frequency responses of the shaft obtained, a technique to detect the existence of slant cracks on the shaft was proposed. This novel method is a simple way that can be used for slant crack detection in rotors.


Rotor system Slant crack Complementary crack angles Backward and forward whirl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dimarogonas A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55, 831–857 (1996). doi:10.1016/0013-7944(94)00175-8 CrossRefGoogle Scholar
  2. 2.
    Wauer J.: On the dynamics of cracked rotors: a literature survey. J. Appl. Mech 43, 13–17 (1990). doi:10.1115/1.3119157 Google Scholar
  3. 3.
    Papadopoulos C.A., Dimarogonas A.D.: Coupled longitudinal and bending vibrations of a rotating shaft with an open crack. J. Sound. Vib. 117, 81–93 (1987). doi:10.1016/0022-460X(87)90437-8 CrossRefGoogle Scholar
  4. 4.
    Sekhar A.S.: Vibration characteristics of a cracked rotor with two open cracks. J. Sound. Vib. 223, 497–512 (1999). doi:10.1006/jsvi.1998.2120 CrossRefGoogle Scholar
  5. 5.
    Darpe A.K., Gupta K., Chawla A.: Dynamics of a two cracked rotor. J. Sound. Vib. 259, 649–675 (2003). doi:10.1006/ jsvi/2002.5098 CrossRefGoogle Scholar
  6. 6.
    Darpe A.K., Gupta K., Chawla A.: Coupled bending, longitudinal and torsional vibrations of a cracked rotor. J. Sound. Vib. 269, 33–60 (2004). doi:10.1016/S0022-460X(03)00003-8 CrossRefGoogle Scholar
  7. 7.
    Darpe A.K., Gupta K., Chawla A.: Transient response and breathing behaviour of a cracked Jeffcott rotor. J. Sound. Vib. 272, 207–243 (2004). doi:10.1016/S0022-460X(03)00327-4 CrossRefGoogle Scholar
  8. 8.
    Darpe A.K.: A novel way to detect transverse surface crack in a rotating shaft. J. Sound. Vib. 305, 151–171 (2004). doi:10.1016/jsv.2007.03.070 CrossRefGoogle Scholar
  9. 9.
    Patel T.H., Darpe A.K.: Influence of crack breathing model on nonlinear dynamics of a cracked rotor. J. Sound. Vib. 311, 953–972 (2008). doi:10.1016/jsv.2007.09.033 CrossRefGoogle Scholar
  10. 10.
    Ichimonji M., Watanabe S.: The dynamics of a rotor system with a shaft having a slant crack. JSME Int. J. 31, 712–718 (1988)Google Scholar
  11. 11.
    Ichimonji M., Kazao S., Watanabe S., Nonaka S.: The dynamics of a rotor system with a slant crack under torsional vibration. Nonlinear Stoch. Dyn. 78, 81–89 (1994)Google Scholar
  12. 12.
    Sekhar A.S., Balaji Prasad P.: Dynamics analysis of a rotor system considering a slant crack in the shaft. J. Sound. Vib. 208, 457–474 (1997). doi:10.1006/jsvi.1997.1222 CrossRefGoogle Scholar
  13. 13.
    Prabhakar S., Sekhar A.S., Mohanty A.R.: Transient lateral analysis of a slant-cracked rotor passing through its flexural critical speed. Mech. Mach. Theory 37, 1007–1020 (2002). doi:10.1016/S0094-114X(02)00020-4 MATHCrossRefGoogle Scholar
  14. 14.
    Sekhar A.S., Mohanty A.R., Prabhakar S.: Vibrations of cracked rotor system: transverse crack versus slant crack. J. Sound. Vib. 279, 1203–1217 (2005). doi:10.1016/j.jsv.2004.01.011 CrossRefGoogle Scholar
  15. 15.
    Darpe A.K.: Dynamics of a Jeffcott rotor with slant crack. J. Sound. Vib. 303, 1–28 (2007). doi:10.1016/j.jsv.2006.07.052 CrossRefGoogle Scholar
  16. 16.
    Darpe A.K.: Coupled vibrations of a rotor with slant crack. J. Sound. Vib. 305, 172–193 (2007). doi:10.1016/j.jsv.2007.03.079 CrossRefGoogle Scholar
  17. 17.
    Bachschmid N., Pennacchi P., Tanzi E.: Some remarks on breathing mechanism, on non-linear effects and on slant and helicoidal cracks. Mech. Syst. Signal Process. 22, 879–904 (2008). doi:10.1016/j.ymssp.2007.11.007 CrossRefGoogle Scholar
  18. 18.
    Papadopoulos C.A.: The strain energy release approach for modeling cracks in rotors: a state of the art review. Mech. Syst. Signal Process. 22, 763–789 (2008). doi:10.1016/j.ymssp.2007.11.009 CrossRefGoogle Scholar
  19. 19.
    Lin Y., Chu F.: The dynamic behavior of a rotor system with a slant crack on the shaft. Mech. Syst. Signal Process. 24, 522–545 (2010). doi:10.1016/j.ymssp.2009.05.021 CrossRefGoogle Scholar
  20. 20.
    Papadopoulos C.A., Dimarogonas A.D.: Stability of cracked rotors in the coupled vibration mode. J. Vib. Acoust. 110, 356–359 (1988)CrossRefGoogle Scholar
  21. 21.
    Tada, H., Paris, P.C., Irwin, G.R.: The Stress Analysis of Cracks. Professional Engineering Publishing, (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations