Skip to main content
Log in

Biomechanical analysis of lumbar interbody fusion with an anisotropic hyperelastic model for annulus fibrosis

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on computed tomography scanning images, this paper developed a detailed finite element model for the human L2–L4 lumbar spine segment with or without L3–L4 fusion. The model included vertebrae, intervertebral disc, facet articulating surfaces and various ligaments. A previously developed hyperelastic fibre-reinforced constitutive model was used to characterize the material property of annulus fibrosus. Numerical results of L3–L4 motion unit such as load–displacement curves and nucleus pressure were compared with experimental data to validate the FE model. The normal and fused lumbar spine segments under various loading conditions, such as flexion, extension and axial rotation, were analysed. The motion range and stress distribution of the L2–L4 models under different loading conditions were then obtained to investigate the effect of lumbar fusion operation. It was shown that under the same loading condition, the fused model had a much smaller body motion range. Interbody fusion brought out obviously different stress distribution in adjacent intervertebral disc annulus fibrosus. And it also increased the intradiscal pressure of adjacent intervertebral disc significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vernon-Roberts B.: Disc pathology and disease states. Biol. Intervertebr. Disc II, 73–119 (1988)

    Google Scholar 

  2. Denozière G., Ku D.N.: Biomechanical comparison between fusion of two vertebrae and implantation of an artificial intervertebral disc. J. Biomech. 39(4), 766–775 (2006)

    Article  Google Scholar 

  3. Fritzell P., Hägg O., Nordwall A.: Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar spine study group. Eur. Spine J. 12(2), 178–189 (2003)

    Google Scholar 

  4. Hanley E.N. Jr, David S.M.: Lumbar arthrodesis for the treatment of back pain. J. Bone Joint Surg. 81(5), 716–730 (1999)

    Google Scholar 

  5. Lee C.K.: Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 13(3), 375–377 (1988)

    Article  Google Scholar 

  6. Rahm M.D., Hall B.B.: Adjacent segment degeneration after lumbar fusion with instrumentation: a retrospective study. J Spinal Disord. Tech. 9(5), 392–400 (1996)

    Google Scholar 

  7. Goto K., Tajima N., Chosa E., Totoribe K., Kubo S., Kuroki H., Arai T.: Effects of lumbar spinal fusion on the other lumbar intervertebral levels (three-dimensional finite element analysis). J. Orthop. Sci. 8(4), 577–584 (2003)

    Article  Google Scholar 

  8. Penta M., Sandhu A., Fraser R.D.: Magnetic resonance imaging assessment of disc degeneration 10 years after anterior lumbar interbody fusion. Spine 20(6), 743–747 (1995)

    Article  Google Scholar 

  9. Seitsalo S., Schlenzka D., Poussa M., K.: Disc degeneration in young patients with isthmic spondylolisthesis treated operatively or conservatively: a long-term follow up. Eur. Spine J. 6(6), 393–397 (1997)

    Article  Google Scholar 

  10. Schmoelz W., Huber J.F., Nydegger T., Claes L., Wilke H.J.: Dynamic stabilization of the lumbar spine and its effects on adjacent segments-An in vitro experiment. J. Spinal Disord. Tech. 16(4), 418–423 (2003)

    Article  Google Scholar 

  11. Gerber M., Crawford N.R., Chamberlain R.H., Fifield M.S, LeHuec J.C., Dickman C.A.: Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: Comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Spine 31(7), 762–768 (2006)

    Article  Google Scholar 

  12. Fagan M.J., Julian S., Mohsen A.M.: Finite element analysis in spine research. J. Eng. Med. 216(5), 281–298 (2002)

    Article  Google Scholar 

  13. Zhang Q.H., Teo E.C.: Finite element application in implant research for treatment of lumbar degenerative disc disease. Med. Eng. Phys. 30(10), 1246–1256 (2008)

    Article  Google Scholar 

  14. Lee K.K., Teo E.C., Fuss F.K., Vanneuville V., Qiu T.X., Ng H.W., Yang K., Sabitzer R.J.: Finite-element analysis for lumbar interbody fusion under axial loading. IEEE Trans. Biomed. Eng. 51(3), 393–400 (2004)

    Article  Google Scholar 

  15. Steffen T., Tsantrizos A., Fruth I., Aebi M.: Cages: designs and concepts. Eur. Spine J. 9(1), S89–S94 (2000)

    Article  Google Scholar 

  16. Adam C., Pearcy M., McCombe P.: Stress analysis of interbody fusion-finite element modelling of intervertebral implant and vertebral body. Clin. Biomech. 18(4), 265–272 (2003)

    Article  Google Scholar 

  17. Chen S.H., Tai C.L., Lin C.Y., Hsieh P.H., Chen W.P.: Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques-a three-dimensional finite element analysis. BMC Musculoskelet. Disord. 9, 88 (2008)

    Article  Google Scholar 

  18. Peng X.Q., Guo Z.Y., Moran B.: An anisotropic hyperelastic constitutive model with fiber-matrix shear interaction for the human annulus fibrosus. J. Appl. Mech. 73(5), 815–824 (2006)

    Article  MATH  Google Scholar 

  19. Chen C.S., Cheng C.K., Liu C.L., Lo W.H.: Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med. Eng. Phys. 23(7), 483–491 (2001)

    Article  Google Scholar 

  20. Zander T., Rohlmann A., Calisse J., Bergmann G.: Estimation of muscle forces in the lumbar spine during upper-body inclination. Clin. Biomech. 16(1), S73–S80 (2001)

    Article  Google Scholar 

  21. Tsuang Y.H., Chiang Y.F., Hung C.Y., Wei H.W., Huang C.H., Cheng C.K.: Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation-A finite element study. Med. Eng. Phys. 31(5), 565–570 (2009)

    Article  Google Scholar 

  22. Holzapfel G.A., Schulze-Bauer C.A.J., Feigl G., Regitnig P.: Single lamellar mechanics of the human lumbar annulus fibrosus. Biomech. Model. Mechanobiol. 3(3), 125–140 (2005)

    Article  Google Scholar 

  23. Virgin W.J.: Experimental investigations into the physical properties of intervertebral disc. J. Bone Joint Surg. 33(4), 607–611 (1951)

    Google Scholar 

  24. Markolf K.L., Morris J.M.: The structural components of the intervertebral disc: a study of their contributions to the ability of the disc to withstand compressive forces. J. Bone Joint Surg. 56, 675–687 (1974)

    Google Scholar 

  25. Gay R.E., Ilharreborde B., Zhao K.D., Berglund L.J., Bronfort G., An K.N.: Stress in lumbar intervertebral discs during distraction: a cadaveric study. Spine J. 8(6), 982–990 (2008)

    Article  Google Scholar 

  26. Steffen T.: Three-dimensional Spine Biomechanics. A Combined In-vivo and Ex-vivo Approach. McGill University, Montreal (1998)

    Google Scholar 

  27. Guan Y., Yoganandan N., Maiman D.J., Pintar F.A.: Internal and external responses of anterior lumbar/lumbosacral fusion: Nonlinear finite element analysis. J. Spinal Disord. Tech. 21(4), 299–304 (2008)

    Article  Google Scholar 

  28. Ivanov A.A., Kiapour A., Ebraheim N.A., Goel V.: Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint a finite element study. Spine 34(5), E162–E169 (2009)

    Article  Google Scholar 

  29. Kumaresan S., Yoganandan N., Pintar F.A., Maiman D.J.: Finite element modelling of the cervical spine: role of intervertebral disc under axial and eccentric loads. Med. Eng. Phys. 21(10), 689–700 (1999)

    Article  Google Scholar 

  30. White A.A., Panjabi M.M.: Clinical Biomechanics of the Spine. Lippincott Williams & Wilkins, New York (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongqi Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Wang, Y., Shi, S. et al. Biomechanical analysis of lumbar interbody fusion with an anisotropic hyperelastic model for annulus fibrosis. Arch Appl Mech 83, 579–590 (2013). https://doi.org/10.1007/s00419-012-0705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0705-6

Keywords

Navigation