Skip to main content
Log in

Free vibration analysis of thin rotating cylindrical shells using wave propagation approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The wave propagation approach is extended to study the frequency characteristics of thin rotating cylindrical shells. Based on Sanders’ shell theory, the governing equations of motion, which take into account the effects of centrifugal and Coriolis forces as well as the initial hoop tension due to rotation, are derived. And, the displacement field is expressed in the form of wave propagation associated with an axial wavenumber k m and circumferential wavenumber n. Using the wavenumber of an equivalent beam with similar boundary conditions as the cylindrical shell, the axial wavenumber k m is determined approximately. Then, the relation between the natural frequency with the axial wavenumber and circumferential wavenumber is established, and the traveling wave frequencies corresponding to a certain rotating speed are calculated numerically. To validate the results, comparisons are carried out with some available results of previous studies, and good agreements are observed. Finally, the relative errors induced by the approximation using the axial wavenumber of an equivalent beam are evaluated with respect to different circumferential wavenumbers, length-to-radius ratios as well as thickness-to-radius ratios, and the conditions under which the analysis presented in this paper will be accurate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E :

Young’s modulus

H :

Thickness of the cylinder

k m :

Axial wavenumber of traveling mode

K :

Flexural rigidity

L :

Length of the cylinder

m :

Order of the axial mode for a thin cylindrical shell or an equivalent beam with similar boundary conditions as the cylindrical shell

L L :

3-by-3 linear differential operator matrix base on Sanders’ shell theory for a non-rotating thin cylindrical shell

L R :

3-by-3 modifying operator matrix taking into account Coriolis and centrifugal forces as well as the initial hoop tension due to rotation

n :

Circumferential wavenumber of traveling mode

q :

Three-dimensional loading vector

R :

Mean radius of the cylinder

t :

Time

u, v, w :

Axial, circumferential and radial displacement

U :

Three-dimensional displacement vector

x, θ, z :

Axial, circumferential and radial coordinates

γ :

Quantity expressed as \({R\sqrt{\rho \left({1 - \mu^{2}}\right)/E}}\)

\({\bar{\delta}}\) :

Coefficient in the general governing equations of motion

η :

Non-dimensional quantity expressed as H 2/12R 2

μ :

Poisson’s ratio

ρ :

Density of the material

ω :

Natural frequency

Ω :

Angular velocity

ω*:

Non-dimensional frequency parameter

Ω*:

Non-dimensional rotating speed

Subscript b :

Backward wave

Subscript f :

Forward wave

References

  1. DiTaranto R.A., Lessen M.: Coriolis acceleration effect on the vibration of a rotating thin-walled circular cylinder. ASME J. Appl. Mech. 31, 700–701 (1964)

    Article  Google Scholar 

  2. Srinivasan A.V., Lauterbach G.F.: Travelling waves in rotating cylindrical shells. J. Eng. Ind. 93, 1229–1232 (1971)

    Article  Google Scholar 

  3. Zohar A., Aboudi J.: The free vibrations of a thin circular finite rotating cylinder. Int. J. Mech. Sci. 15, 269–278 (1973)

    Article  MATH  Google Scholar 

  4. Saito T., Endo M.: Vibration of finite length, rotating cylindrical shells. J. Sound Vib. 107, 17–28 (1986)

    Article  MATH  Google Scholar 

  5. Huang S.C., Soedel W.: Effects of Coriolis acceleration on the forced vibration of rotating cylindrical shells. ASME J. Appl. Mech. 55, 231–233 (1988)

    Article  Google Scholar 

  6. Huang S.C., Hsu B.S.: Resonant phenomena of a rotating cylindrical shell subjected to a harmonic moving load. J. Sound Vib. 136, 215–228 (1990)

    Article  Google Scholar 

  7. Penzes L.E., Kraus H.: Free vibration of prestressed cylindrical shells having arbitrary homogeneous boundary conditions. AIAA J. 10, 1309–1313 (1972)

    Article  Google Scholar 

  8. Padovan J.: Natural frequencies of rotating prestressed cylinders. J. Sound Vib. 31, 469–482 (1973)

    Article  Google Scholar 

  9. Endo M., Hatamura K., Sakata M., Taniguchi O.: Flexural vibration of a thin rotating ring. J. Sound Vib. 92, 261–272 (1984)

    Article  Google Scholar 

  10. Ng T.Y., Lam K.Y.: Vibration and critical speed of a rotating cylindrical shell subjected to axial loading. Appl. Acoust. 56, 273–282 (1999)

    Article  Google Scholar 

  11. Wang Y.Q., Guo X.H., Chang H.H., Li H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part I: numerical solution. Int. J. Mech. Sci. 52, 1217–1224 (2010)

    Article  Google Scholar 

  12. Wang Y.Q., Guo X.H., Chang H.H., Li H.Y.: Nonlinear dynamic response of rotating circular cylindrical shells with precession of vibrating shape—part II: approximate analytical solution. Int. J. Mech. Sci. 52, 1208–1216 (2010)

    Article  Google Scholar 

  13. Rand O., Stavsky Y.: Free vibrations of spinning composite cylindrical shells. Int. J. Solids Struct. 28, 831–843 (1991)

    Article  Google Scholar 

  14. Chun D.K., Bert C.W.: Critical speed analysis of laminated composite, hollow drive shafts. Compos. Eng. 3, 633–643 (1993)

    Article  Google Scholar 

  15. Lam K.Y., Loy C.T.: On vibrations of thin rotating laminated composite cylindrical shells. Compos. Eng. 4, 1153–1167 (1994)

    Article  Google Scholar 

  16. Lam K.Y., Loy C.T.: Free vibrations of a rotating multi-layered cylindrical shell. Int. J. Solids Struct. 32, 647–663 (1995)

    Article  MATH  Google Scholar 

  17. Lam K.Y., Loy C.T.: Analysis of rotating laminated cylindrical shells by different thin shell theories. J. Sound Vib. 186, 23–35 (1995)

    Article  MATH  Google Scholar 

  18. Lam K.Y., Loy C.T.: Effects of boundary conditions on frequencies of a multi-layered cylindrical shell. J. Sound Vib. 188, 363–384 (1995)

    Article  Google Scholar 

  19. Shu C., Du H.: Free vibration analysis of laminated composite cylindrical shells by DQM. Compos. Part B Eng. 28, 267–274 (1997)

    Article  Google Scholar 

  20. Lam K.Y., Loy C.T.: Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos. Struct. 41, 215–228 (1998)

    Article  Google Scholar 

  21. Lee Y.S., Kim Y.W.: Effect of boundary conditions on natural frequencies for rotating composite cylindrical shells with orthogonal stiffeners. Adv. Eng. Softw. 30, 649–655 (1999)

    Article  Google Scholar 

  22. Mehrparvar M.: Vibration analysis of functionally graded spinning cylindrical shells using higher order shear deformation theory. J. Solid Mech. 1, 159–170 (2009)

    Google Scholar 

  23. Nath J.K., Kapuria S.: Assessment of improved zigzag and smeared theories for smart cross-ply composite cylindrical shells including transverse normal extensibility under thermoelectric loading. Arch. Appl. Mech. 82, 859–877 (2012)

    Article  Google Scholar 

  24. Hua L., Lam K.Y.: Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method. Int. J. Mech. Sci. 40, 443–459 (1998)

    Article  MATH  Google Scholar 

  25. Guo D., Zheng Z.C., Chu F.L.: Vibration analysis of spinning cylindrical shells by finite element method. Int. J. Solids Struct. 39, 725–739 (2002)

    Article  MATH  Google Scholar 

  26. Liew K.M., Ng T.Y., Zhao X., Reddy J.N.: Harmonic reproducing kernel particle method for free vibration analysis of rotating cylindrical shells. Comput. Meth. Appl. Mech. Eng. 191, 4141–4157 (2002)

    Article  MATH  Google Scholar 

  27. Civalek Ö.: An efficient method for free vibration analysis of rotating truncated conical shells. Int. J. Press. Vessels Pip. 83, 1–12 (2006)

    Article  Google Scholar 

  28. Civalek Ö.: Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct. Eng. Mech. 25, 127–130 (2007)

    Google Scholar 

  29. Civalek Ö., Gürses M.: Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique. Int. J. Press. Vessels Pip. 86, 677–683 (2009)

    Article  Google Scholar 

  30. Sun S.P., Chu S.M., Cao D.Q.: Vibration characteristics of thin rotating cylindrical shells with various boundary conditions. J. Sound Vib. 331, 4170–4186 (2012)

    Article  Google Scholar 

  31. Wang C., Lai J.C.S.: Prediction of natural frequencies of finite length circular cylindrical shells. Appl. Acoust. 59, 385–400 (2000)

    Article  Google Scholar 

  32. Zhang X.M., Liu G.R., Lam K.Y.: Vibration analysis of thin cylindrical shells using wave propagation approach. J. Sound Vib. 239, 397–403 (2001)

    Article  Google Scholar 

  33. Zhang X.M., Liu G.R., Lam K.Y.: Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach. Appl. Acoust. 62, 229–243 (2001)

    Article  Google Scholar 

  34. Zhang X.M.: Frequency analysis of submerged cylindrical shells with wave propagation approach. Int. J. Mech. Sci. 44, 1259–1273 (2004)

    Article  Google Scholar 

  35. Li X.: Study on free vibration analysis of circular cylindrical shells using wave propagation. J. Sound Vib. 311, 667–682 (2008)

    Article  Google Scholar 

  36. Gan L., Li X., Zhang Z.: Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach. J. Sound Vib. 326, 633–646 (2009)

    Article  Google Scholar 

  37. Leissa A.W.: Vibration of Shells, NASA SP 288. US Government Printing Office, Washington, DC (1973)

    Google Scholar 

  38. Blevins R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengqing Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, S., Cao, D. & Chu, S. Free vibration analysis of thin rotating cylindrical shells using wave propagation approach. Arch Appl Mech 83, 521–531 (2013). https://doi.org/10.1007/s00419-012-0701-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0701-x

Keywords

Navigation