Skip to main content
Log in

Relationship between the elastic–plastic interface radius and internal pressure of thick-walled cylinders using the Lambert W function

  • Technical Note
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

It is necessary to determine the elastic–plastic interface radius before calculating the stresses in elastic-perfectly plastic thick-walled cylinders under internal pressure. The relationship between the radius and internal pressure is expressed by a transcendental equation in the existing literature. In this paper, we show that the radius can be explicitly expressed as a function of the internal pressure in terms of the Lambert W function, and it is very simple to use this expression to determine the values of the radius with the help of computer algebra systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, London (1950)

    MATH  Google Scholar 

  2. Chen W.F., Han D.J.: Plasticity for Structural Engineers. Springer, New York (1988)

    Book  MATH  Google Scholar 

  3. Lubliner L.: Plasticity Theory. Dover Publications, New York (2008)

    MATH  Google Scholar 

  4. Chakrabarty J.: Theory of Plasticity. Elsevier Butterworth-Heinemann, Oxford (2006)

    Google Scholar 

  5. Zhu Z., Yang J.: Autofrettage of thick cylinders. Int. J. Press. Vess. Pip. 75, 443–446 (1998)

    Article  Google Scholar 

  6. Wahi N., Ayob A., Elbasheer M.K.: Effect of optimum autofrettage on pressure limits of thick-walled cylinder. Int. J. Environ. Sci. Dev. 2, 329–333 (2011)

    Google Scholar 

  7. Corless R.M., Gonnet G.H., Hare D.E.G., Jeffrey D.J., Knuth D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Banwell T.C., Jayakumar A.: Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 36, 291–292 (2000)

    Article  Google Scholar 

  9. Cranmer S.R.: New views of the solar wind with the Lambert W function. Am. J. Phys. 72, 1397–1403 (2004)

    Article  Google Scholar 

  10. Lutz E.: Analytical results for a Fokker-Planck equation in the small noise limit. Am. J. Phys. 73, 968–972 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Packel E.W., Yuen D.S.: Projectile motion with resistance and the Lambert W function. College Math. J. 35, 337–350 (2004)

    Article  MathSciNet  Google Scholar 

  12. Warburton R.D.H., Wang J., Burgdörfer J.: Analytic approximations of projectile motion with quadratic air resistance. J. Serv. Sci. Manage. 3, 98–105 (2010)

    Article  Google Scholar 

  13. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, p. 111 (2010)

  14. Stewart S.: A new elementary function for our curricula? Austral. Senior Math. J. 19, 8–26 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Guo, YJ. & Xu, DQ. Relationship between the elastic–plastic interface radius and internal pressure of thick-walled cylinders using the Lambert W function. Arch Appl Mech 83, 643–646 (2013). https://doi.org/10.1007/s00419-012-0699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0699-0

Keywords

Navigation