Skip to main content
Log in

Higher-order accurate implicit time integration schemes for transport problems

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper is concerned with the numerical solution of transient transport problems by means of spatial and temporal discretization methods. The generalized initial boundary value problem of various nonlinear transport phenomena like heat transfer or mass transport is discretized in space by p-finite elements. After finite element discretization, the resulting first-order semidiscrete balance has to be solved with respect to time. Next to the classical generalized-α integration method predicated on the Newmark approach and the evaluation at a generalized midpoint also implicit Runge–Kutta time integration schemes, are presented. Both families of finite difference-based integration schemes are derived for general first-order problems. In contrast to the above-mentioned algorithms, temporal discontinuous and continuous Galerkin methods evaluate the balance equation not at a selected time instant within the timestep, but in an integral sense over the whole time step interval. Therefore, the underlying semidiscrete balance and the continuity of the primary variables are weakly formulated within time steps and between time steps, respectively. Continuous Galerkin methods are obtained by the strong enforcement of the continuity condition as special cases. The introduction of a natural time coordinate allows for the application of standard higher-order temporal shape functions of the p-Lagrange type and the well-known Gauß–Legendre quadrature of associated time integrals. It is shown that arbitrary order accurate integration schemes can be developed within the framework of the proposed temporal p-Galerkin methods. Selected benchmark analyses of calcium diffusion demonstrate the properties of all three methods with respect to non-smooth initial or boundary conditions. Furthermore, the robustness of the present time integration schemes is also demonstrated for the highly nonlinear reaction–diffusion problem of calcium leaching, including the pronounced changes of the reaction term and non-smooth changes of Dirichlet boundary conditions of calcium dissolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E.’s. SIAM J. Numer. Anal. 14(6), 1006–1021 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altenbach J., Altenbach H.: Einführung in die Kontinuumsmechanik. Teubner Studienbücher, Stuttgart (1994)

    Google Scholar 

  3. Argyris J., Scharpf D.: Finite elements in time and space. J. R. Aeronaut. Soc. 73, 1041–1044 (1969)

    Google Scholar 

  4. Argyris J., Vaz L., Willam K.: Higher order methods for transient diffusion analysis. Comput. Methods Appl. Mech. Eng. 12, 243–278 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babuška I., Szabó B., Katz I.: The p-version of the finite element method. SIAM J. Numer. Anal. 18, 515–545 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bangert F., Kuhl D., Meschke G.: Chemo-hygro-mechanical modeling and numerical simulation of concrete deterioration caused by alkali-silica reaction. Int. J. Numer. Anal. Methods Geomech. 28, 689–714 (2004)

    Article  MATH  Google Scholar 

  7. Bathe K.J.: Finite-Elemente-Methoden. Springer, Berlin (2002)

    Book  Google Scholar 

  8. Burg K., Haf H., Wille F., Meister A.: Partielle Differentialgleichungen und Funktionalanalytische Grundlagen. Vieweg+ Teubner, Wiesbaden (2010)

    Book  Google Scholar 

  9. Butcher J.: On Runge-Kutta processes of high order. J. Aust. Math. Soc. IV(2), 179–194 (1964)

    Article  MathSciNet  Google Scholar 

  10. Butcher J.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2008)

    Book  MATH  Google Scholar 

  11. Chung J., Hulbert G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60, 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B.: Discontinuous Galerkin methods. In: Plenary Lecture Presented at the 80th Annual GAMM Conference, Augsburg, 2002. Zeitschrift für angewandte Mechanik und Mathematik, ZAMM, vol. 83, no. 11, pp. 731–754 (2003)

  13. Cockburn B., Karniadakis G., Shu C.W.: The development of the discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G., Shu, C.W. (eds) Discontinuous Galerkin Methods: Theory, Computation and Applications, pp. 3–50. Springer, Berlin (2000)

    Chapter  Google Scholar 

  14. Coussy O., Ulm F.J.: Elements of durability mechanics of concrete structures. In: Ulm, F.J., Bažant, Z., Wittmann, F. (eds) Creep, Shrinkage and Durability Mechanics of Concrete and other Quasi-Brittle Materials, pp. 3993–4009. Elsevier Science, Amsterdam (2001)

    Google Scholar 

  15. Deuflhard P., Bornemann F.: Numerische Mathematik II: Gewöhnliche Differentialgleichungen. de Gruyter, Berlin (2002)

    MATH  Google Scholar 

  16. Diebels, S.: Mikropolare Zweiphasenmodelle: Formulierung auf Basis der Theorie Poröser Medien. Habilitation, Institut für Mechanik (Bauwesen) der Universität Stuttgart (2000)

  17. Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phase model. Tech. Mech. 19(1), 19–27 (1999)

    Google Scholar 

  18. Ehlers W.: Grundlegende Konzepte in der Theorie poröser Medien. Tech. Mecha. 16(1), 63–76 (1996)

    Google Scholar 

  19. Ehlers W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds) Porous Media: Theory, Experiments and Numerical Applications, pp. 3–86. Springer, Berlin (2002)

    Google Scholar 

  20. Ellsiepen, P.: Zeit- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. PhD thesis, Universität Stuttgart (1999)

  21. Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite element analyses as differential-algebraic equations. Int. J. Numer. Methods Eng. 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  22. Eriksson K., Johnson C., Thomée V.: Time discretization of parabolic problems by the discontinuous Galerkin method. RAIRO, Model. Math. Anal. Numer. 19, 611–643 (1985)

    MathSciNet  MATH  Google Scholar 

  23. Eriksson K., Estep D., Hansbo P., Johnson C.: Computational Differential Equations. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  24. Fried I.: Finite-element analysis of time-dependent phenomena. AIAA J. 7(6), 1170–1173 (1969)

    Article  MATH  Google Scholar 

  25. Hairer E., Wanner G.: Solving Ordinary Differential Equations II: Stiff and Differential Problems. Springer, Berlin (2002)

    Google Scholar 

  26. Hairer E., Nørsett S., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, Berlin (2000)

    Google Scholar 

  27. Hartmann, S.: Finite Elemente Inelastischer Kontinua; Interpretation als Algebro-Differentialgleichungssysteme. Habilitation, Institut für Mechanik der Universität Kassel (2003)

  28. Hilber H., Hughes T., Taylor R.: Improved numerical dissipation for the time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  29. Hodges D., Hou L.: Shape functions for mixed p-version finite elements in the time domain. J. Sound Vib. 145(2), 169–178 (1991)

    Article  Google Scholar 

  30. Hughes T., Caughey T., Liu W.: Finite-element methods for nonlinear elastodynamics which conserve energy. J. Appl. Mech. Trans. ASME 45, 366–370 (1978)

    Article  MATH  Google Scholar 

  31. Hulme B.: One-step piecewise polynomial Galerkin methods for initial value problems. Math. Comput. 26(118), 415–426 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jamet P.: Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15, 912–928 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jansen K., Whiting C., Hulbert G.: A generalized-α method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Int. J. Numer. Methods Eng. 190(3–4), 305–319 (2000)

    MathSciNet  MATH  Google Scholar 

  34. Johnson C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  35. Kuhl D.: Modellierung und Simulation von Mehrfeldproblemen der Strukturmechanik, Habilitation, Institute for Structural Mechanics. Ruhr University Bochum, Bochum (2005)

    Google Scholar 

  36. Kuhl, D.: A general numerical model for coupled processes in concrete. In: Setzer, M. (ed). 5th International Essen Workshop, Transport in Concrete, TRANSCON 07, pp. 373–386. Essen (2007)

  37. Kuhl D., Crisfield M.: Energy conserving and decaying algorithms in non-linear structural dynamics. Int. J. Numer. Methods Eng. 45, 569–599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Kuhl D., Meschke G.: Computational modeling of transport mechanisms in reactive porous media - application to calcium leaching of concrete. In: de Borst, R., de Bićanić, N., Mang, H., Meschke, G. (eds) Computational Modelling of Concrete Structures, pp. 473–482. Balkema, Rotterdam (2003)

    Google Scholar 

  39. Kuhl D., Ramm E.: Constraint energy momentum algorithm and its application to nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. 136, 293–315 (1996)

    Article  MATH  Google Scholar 

  40. Kuhl D., Bangert F., Meschke G.: Coupled chemo-mechanical deterioration of cementitious materials. Part 1: modeling. Part 2: numerical methods and simulations. Int. J. Solids Struct. 41(1), 15–67 (2004)

    Article  MATH  Google Scholar 

  41. Kutta W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Zeit. Math. Phys. 46, 435–453 (1901)

    MATH  Google Scholar 

  42. Le Saint P., Raviart P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–145. Academic Press, New York (1974)

    Google Scholar 

  43. Lewis R., Morgan K., Thomas H., Seetharamu K.: The Finite Element Method in Heat Transfer Analysis. Wiley, Chicester (1996)

    MATH  Google Scholar 

  44. Meschke G., Grasberger S.: Numerical modeling of coupled hygro-mechanical degradation of cementitious materials. J. Eng. Mech. 129(4), 383–392 (2003)

    Article  Google Scholar 

  45. Newmark N: A method of computation for structural dynamics. ASCE J. Eng. Mech. Div. 85, 67–94 (1959)

    Google Scholar 

  46. Oden J.: A general theory of finite elements. II. Applications. Int. J. Numer Methods Eng. 1, 247–259 (1969)

    Article  MATH  Google Scholar 

  47. Peters D., Izadpanah A.: hp-version finite elements for the space time domain. Comput. Mech. 3, 73–88 (1988)

    Article  MATH  Google Scholar 

  48. Quint K., Hartmann S., Rothe S., Saba N., Steinhoff K.: Experimental validation of high-order time integration for non-linear heat transfer problems. Comput. Mech. 48, 81–96 (2011)

    Article  MATH  Google Scholar 

  49. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. In: Technical Report, Los Alamos Scientific Laboratory, lA-UR-73-479 (1973)

  50. Runge C.: Über angewandte mathematik. Math. Ann. 44(2 & 3), 437–448 (1894)

    Article  MathSciNet  MATH  Google Scholar 

  51. Simo J., Tarnow N.: The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. J. Appl. Math. Phys. 43, 757–792 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. Steinhoff K., Maier H., Biermann D.: Functionally Graded Materials in Industrial Mass Production. Verlag Wissenschaftliche Scripten, Auerbach (2009)

    Google Scholar 

  53. Steinhoff K., Weidig U., Saba N.: Investigation of plastic forming under the influence of locally and temporally variable temperature and stress states. In: Steinhoff, K., Maier, H., Biermann, D. (eds) Functionally Graded Materials in Industrial Mass Production, pp. 35–52. Verlag Wissenschaftliche Scripten, Auerbach (2009)

    Google Scholar 

  54. Tannehill J., Anderson D., Pletcher R.: Computational Fluid Mechanics and Heat Transfer. Taylor & Francis, Philadelphia (1997)

    Google Scholar 

  55. Wood W., Bossak M., Zienkiewicz O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 15, 1562–1566 (1981)

    Article  MathSciNet  Google Scholar 

  56. Zienkiewicz O., Taylor R.: The Finite Element Method. The Basis. Butterworth-Heinemann, Oxford (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Carstens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carstens, S., Kuhl, D. Higher-order accurate implicit time integration schemes for transport problems. Arch Appl Mech 82, 1007–1039 (2012). https://doi.org/10.1007/s00419-012-0638-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0638-0

Keywords

Navigation