Skip to main content
Log in

Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Based on the shear spring model, the propagation of Love wave in two-layered piezoelectric/elastic composite plates under the influence of interfacial defect is investigated. The piezoelectric layer is electrically shorted at both top and bottom surfaces. The wave form solutions of the piezoelectric and elastic layers are obtained, and the dispersion equation is derived by subjecting the boundary conditions and the continuity conditions to the obtained wave form solutions. Numerical results are performed for PZT4/aluminum composite plate. The phase velocities and the mode shapes of mechanical displacement and electric potential are illustrated graphically. The results show that both the interfacial defect and the thickness ratio between the piezoelectric and elastic layers have significant effect on the propagation characteristics of Love wave. One important feature is observed that the interfacial defect always decreases the phase velocities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Yang J.S.: Analysis of Piezoelectric Devices. World Scientific, Singapore (2006)

    Book  Google Scholar 

  3. Gizeli E., Lowe C.R., Liley M., Vogel H.: Detection of supported lipid layers with the acoustic Love waveguide device: application to biosensors. Sens. Actuators B 34, 295–300 (1996)

    Article  Google Scholar 

  4. Grimal Q., Naili S., Watzky A.: A study of transient elastic wave propagation in a bimaterial modeling the thorax. Int. J. Solids Struct. 39, 5345–5369 (2002)

    Article  MATH  Google Scholar 

  5. Ryden N., Lowe M.J.S.: Guided wave propagation in three-layer pavement structures. J. Acoust. Soc. Am. 116, 2902–2913 (2004)

    Article  Google Scholar 

  6. Lee Y.C., Cheng S.W.: Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48, 830–837 (2001)

    Article  Google Scholar 

  7. Cicco G.D., Morten B.: New approach to the excitation of plate waves for piezoelectric thick-film devices. Ultrasonics 48, 697–706 (2008)

    Article  Google Scholar 

  8. Bleustein J.L.: A new surface wave in piezoelectric materials. Appl. Phys. Lett. 13, 412–414 (1968)

    Article  Google Scholar 

  9. Tiersten H.F.: Linear Piezoelectric Plate Vibrations. Plenum, New York (1969)

    Google Scholar 

  10. Wang J., Yong Y.K., Imai T.: Finite element analysis of the piezoelectric vibrations of quartz plate resonators with higher order plate theory. Int. J. Solids Struct. 36, 2303–2319 (1999)

    Article  MATH  Google Scholar 

  11. Yang J.S.: Thickness-twist edge modes in a semi-infinite piezoelectric plate of crystals with 6~mm symmetry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 220–221 (2007)

    Article  MATH  Google Scholar 

  12. Curtis R.G., Redwood M.: Transverse surface waves on a piezoelectric material carrying a metal layer of finite thickness. J. Appl. Phys. 44, 2002–2007 (1973)

    Article  Google Scholar 

  13. Cheng N.C., Sun C.: Wave propagation in two-layered piezoelectric plates. J. Acoust. Soc. Am. 57, 632–638 (1975)

    Article  MATH  Google Scholar 

  14. Wang Q.: Wave propagation in a piezoelectric coupled solid media. ASME J. Appl. Mech. 69, 819–823 (2002)

    Article  MATH  Google Scholar 

  15. Wang Q.: SH wave propagation in piezoelectric coupled plates. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 596–603 (2002)

    Article  Google Scholar 

  16. Wang Q., Wu N., Quek S.T.: Acoustic wave in piezoelectric coupled plated with open circuit. Int. J. Struct. Stab. Dyn. 10, 299–313 (2010)

    Article  MathSciNet  Google Scholar 

  17. Du J.K., Jin X.Y., Wang J., Xian K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46, 13–22 (2007)

    Article  Google Scholar 

  18. Qian Z.H., Jin F., Hirose S.: Effects of covering layer thickness on Love waves in functionally graded piezoelectric substrates. Arch. Appl. Mech. 81, 1743–1755 (2011)

    Article  Google Scholar 

  19. Jin F., Wang Z.K., Wang T.J.: The propagation behaviour of Love waves in a pre-stressed piezoelectric layered structure. Key Eng. Mater. 183, 755–760 (2000)

    Article  Google Scholar 

  20. Jin F., Wang Z.K., Kishimoto K.: The propagation behavior of B–G waves in a pre-stressed piezoelectric layered structure. Int. J. Nonlinear Sci. 4, 125–138 (2003)

    Article  Google Scholar 

  21. Qian Z.H., Jin F., Lu T.J., Kishimoto K.: Transverse surface waves in a 6 mm piezoelectric material carrying a prestressed metal layer of finite thickness. Appl. Phys. Lett. 94, 093513 (2009)

    Article  Google Scholar 

  22. Qian Z.H., Jin F., Lu T.J., Kishimoto K., Hirose S.: Effect of initial stress on Love waves in a piezoelectric structure carrying a functionally graded material layer. Ultrasonics 50, 84–90 (2010)

    Article  Google Scholar 

  23. Benveniste Y.: A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media. J. Mech. Phys. Solids 54, 708–734 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen W.Q., Cai J.B., Ye G.R., Wang Y.F.: Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. Int. J. Solids Struct. 41, 5247–5263 (2004)

    Article  MATH  Google Scholar 

  25. Baltazar A., Wang L., Xie B., Rokhlin S.I.: Inverse ultrasonic determination of imperfect interfaces and bulk properties of a layer between two solids. J. Acoust. Soc. Am. 114, 1424–1434 (2003)

    Article  Google Scholar 

  26. Fan H., Yang J.S., Xu L.M.: Piezoelectric waves near an imperfectly bonded interface between two half-spaces. Appl. Phys. Lett. 88, 203509 (2006)

    Article  Google Scholar 

  27. Chen Z.G., Hu Y.T., Yang J.S.: Shear horizontal piezoelectric waves in a piezoceramic plate imperfectly bonded to two piezoceramic half-spaces. J. Mech. 24, 229–239 (2008)

    Article  Google Scholar 

  28. Nye J.F.: Physical Properties of Crystals. Clarendon Press, Oxford (1985)

    Google Scholar 

  29. Liu J.X., Wang Y.H., Wang B.L.: Propagation of shear horizontal surface waves in a layered piezoelectric half-space with an imperfect interface. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1875–1879 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H.M., Zhao, Z.C. Love waves in a two-layered piezoelectric/elastic composite plate with an imperfect interface. Arch Appl Mech 83, 43–51 (2013). https://doi.org/10.1007/s00419-012-0631-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-012-0631-7

Keywords

Navigation