Skip to main content
Log in

Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Standard coupling approaches for simulating coupled MBS/FEM systems may entail enormous CPU times in order to achieve a stable and accurate solution. To stabilize and speed up the solution process, semi-implicit coupling approaches can be applied successfully. In literature, semi-implicit coupling approaches have been introduced, where Jacobian information is exchanged between the subsystems using partial derivatives with respect to the state vectors of the subsystems. The drawback of these methods is that the numerical calculation of the Jacobians with respect to the whole state vector of the subsystems is very time-consuming. The key idea of the semi-implicit coupling technique presented here is to reduce the computational effort by using Jacobian information only with respect to the coupling variables.

The semi-implicit coupling technique introduced here is exemplarily applied for coupling a commercial MBS code with a commercial FEM code. As a practical example, we consider a hybrid nonlinear rotor/bearing model of a high-speed turbine. The rotor is modeled as a flexible multibody system. For calculating the bearing reactions, a finite element discretization of Reynolds fluid film equation is applied which yields the pressure distribution in the fluid films of the hydrodynamic bearings. Both codes are coupled via interprocess communication (IPC). A very time-efficient implementation of the semi-implicit coupling approach can be accomplished by a parallelization on multiple CPUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio J., Pombo J., Rauter F., Pereira M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. Comput. Methods Appl. Sci. 12, 231–252 (2008)

    Google Scholar 

  2. Andreykiv A., Rixen D.J.: Numerical modelling of electromechanical coupling using fictitious domain and level set methods. Int. J. Numer. Methods Eng. 80, 478–506 (2007)

    Article  Google Scholar 

  3. Arnold, J., Einarsson, G., Schütte, A.: Multibody simulation of an aeroelastic delta wing in roll manoeuvre. In: Proceedings of ICAS 2006. Hamburg (2006)

  4. Arnold, M.: Multi-rate time integration for large scale multibody system models. In: P. Eberhard (Ed.) IUTAM Symposium on Multiscale Problems in Multibody System Contacts, pp. 1–10. Springer, Berlin (2007)

  5. Arnold M., Simeon B.: Pantograph and catenary dynamics: a benchmark problem and its numerical solution. Appl. Numer. Math. 34, 345–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baines N.C.: Fundamentals of Turbocharging. Concepts NREC, USA (2005)

    Google Scholar 

  7. Bathe K.J.: Finite-Elemente-Methoden, 2 edn. Springer, Berlin (2007)

    Google Scholar 

  8. Bathe K.J., Zhang H.: Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60, 213–232 (2004)

    Article  MATH  Google Scholar 

  9. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Visual. Sci. (2010). doi:10.1007/s00791-010-0150-4

  10. Boyaci, A., Seemann, W., Proppe, C.: Bifurcation analysis of a turbocharger rotor supported by floating ring bearings. In: Proceedings of IUTAM Symposium on Emerging Trends in Rotor Dynamics. Indian Institute of Technology, Delhi (2009)

  11. Brenan K.E., Campbell S.L., Petzold L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, 2 edn. SIAM, Philadelphia (1996)

    MATH  Google Scholar 

  12. Burrage K.: Parallel and Sequential Methods for Ordinary Differential Equations (Numerical Mathematics and Scientific Computation). Oxford University Press, USA (1995)

    Google Scholar 

  13. Busch, M., Schweizer, B.: Numerical stability and accuracy of different co-simulation techniques: Analytical investigations based on a 2-DOF test model. In: Proceedings of The 1st Joint International Conference on Multibody System Dynamics. Lappeenranta (2010)

  14. Cameron A., Ettles C.M.M.: Basic Lubrication Theory, 3 edn. Ellis Horwood, Chichester (1981)

    Google Scholar 

  15. Carrarini A.: Coupled multibody-aerodynamic simulation of high-speed trains manoeuvres. Proc. Appl. Math. Mech. (PAMM) 2, 114–115 (2003)

    Article  Google Scholar 

  16. Carstens V., Kemme R., Schmitt S.: Coupled simulation of flow-structure interaction in turbomachinery. Aerospace Sci. Technol. 7, 298–306 (2003)

    Article  MATH  Google Scholar 

  17. Craig R., Bampton M.: Coupling of substructures for dynamics analysis. AIAA J. 6, 1313–1319 (1968)

    Article  MATH  Google Scholar 

  18. Dietz, S., Hippmann, G., Schupp, G.: Interaction of vehicles and flexible tracks by cosimulation of multibody vehicle systems and finite element track models. In: 17th Symposium Dynamics of Vehicles on Roads and Tracks IAVSD 2001, Copenhagen (2001)

  19. Dietz S., Netter H., Sachau D.: Fatigue life prediction of a railway bogie under dynamic loads through simulation. Vehicle Syst. Dyn. Int. J. Vehicle Mech. Mobility 29, 385–402 (1998)

    Google Scholar 

  20. Finol, E.A., Martino, E.S.D., Vorp, D.A., Amon, C.H.: Fluid-structure interaction and structural analyses of an aneurysm model. In: Proceedings of the 2003 Summer Bioengineering Conference SBC2003. Key Biscayne (2003)

  21. Goenka P.K.: Dynamically loaded journal bearings: finite element method analysis. Trans. ASME J. Tribol. 106, 429–439 (1984)

    Article  Google Scholar 

  22. Greiff, M., Bala, U.B., Mathis, W.: Hybrid numerical simulation of micro electro mechanical systems. In: Progress in Electromagnetics Research Symposium 2006, Cambridge (2006)

  23. Hauck, A.: Numerical simulation of coupled electro-mechanical systems using the finite element method. In: CSE Conference 2005, Orlando (2005)

  24. Heckmann A., Arnold M., Vaculin O.: A modal multifield approach for an extended flexible body description in multibody dynamics. Multibody Syst. Dyn. 13, 299–322 (2005)

    Article  MATH  Google Scholar 

  25. Hinrichsen D., Pritchard A.J.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, 1 edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  26. Kelley C.: Solving Nonlinear Equations with Newton’s Method. Siam, Thailand (2003)

    Book  MATH  Google Scholar 

  27. Koutsovasilis P., Quarz V., Beitelschmidt M.: Standard input data for FEM-MBS coupling: importing alternative model reduction methods into SIMPACK. Math. Comput. Model. Dyn. Syst. 15, 51–68 (2009)

    Article  MATH  Google Scholar 

  28. Kübler R., Schiehlen W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000)

    Article  MATH  Google Scholar 

  29. Liu F., Cai J., Zhu Y.: Calculation of Wing Flutter by a coupled fluid-structure method. J. Aircraft 38, 334–342 (2001)

    Article  Google Scholar 

  30. Penrose J.M.T., Staples C.J.: A time-adaptive fluid-structure interaction method for thermal coupling. Int. J. Numer. Methods Eng. 40, 467–478 (2002)

    Article  MATH  Google Scholar 

  31. Schweizer B.: Oil Whirl, Oil Whip and Whirl/Whip synchronization occurring in rotor systems with full-floating ring bearings. J. Nonlinear Dyn. 57, 509–532 (2009)

    Article  MATH  Google Scholar 

  32. Schweizer B.: Total instability of turbocharger rotors—physical explanation of the dynamic failure of rotors with full-floating ring bearings. J. Sound Vib. 328, 156–190 (2009)

    Article  Google Scholar 

  33. Schweizer B.: Dynamics and stability of automotive turbochargers. Arch. Appl. Mech. 80, 1017–1043 (2010)

    Article  Google Scholar 

  34. Shabana A.A.: Dynamics of Multibody Systems, 2 edn. Wiley, London (1998)

    MATH  Google Scholar 

  35. Strehmel K., Weiner R.: Numerik gewöhnlicher Differentialgleichungen. Teubner, Stuttgart (1995)

    MATH  Google Scholar 

  36. Szeri A.Z.: Fluid Film Lubrication: Theory and Design. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  37. Tanaka M., Hori Y.: Stability characteristics of floating bush bearings. ASME J. Lubr. Technol. 94, 248–259 (1972)

    Article  Google Scholar 

  38. Simpack AG: SIMPACK Documentation (2009) http://www.simpack.com

  39. Veitl A., Arnold M.: Coupled simulation of multibody systems and elastic structures. In: Ambrósio, J.A.C., Schiehlen, W. (eds) Advances in Computational Multibody Dynamics, pp. 635–644. IDMEC/IST, Lisbon (2001)

    Google Scholar 

  40. Wauer J., Schweizer B.: Dynamics of rotating thermoelastic disks with stationary heat source. Appl. Math. Comput. 215, 4272–4279 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wünsche S., Clauß C., Schwarz P., Winkler F.: Electro-thermal circuit simulation using simulator coupling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5, 277–282 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Schweizer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busch, M., Schweizer, B. Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch Appl Mech 82, 723–741 (2012). https://doi.org/10.1007/s00419-011-0586-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0586-0

Keywords

Navigation