Skip to main content
Log in

Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Thermo-mechanical vibrations of a simply supported spring-mass-beam system are investigated analytically in this paper. Taking into account the thermal effects, the nonlinear equations of motion and internal/external boundary conditions are derived through Hamilton’s principle and constitutive relations. Under quasi-static assumptions, the equations governing the longitudinal motion are transformed into functions of transverse displacements, which results in three integro-partial differential equations with coupling terms. These are solved using the direct multiple-scale method, leading to closed-form solutions for the mode functions, nonlinear natural frequencies and frequency–response curves of the system. The influence of system parameters on the linear and nonlinear natural frequencies, mode functions, and frequency–response curves is studied through numerical parametric analysis. It is shown that the vibration characteristics depend on the mid-plane stretching, intra-span spring, point mass, and temperature change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Low K.H.: Natural frequencies of a beam–mass system in transverse vibration: Rayleigh estimation versus eigen analysis solutions. Int. J. Mech. Sci. 45(6–7), 981–993 (2003)

    Article  MATH  Google Scholar 

  2. Miaz S., Bambill D.V., Rossit C.A., Laura P.A.A.: Transverse vibration of Bernoulli–Euler beams carrying point masses and taking into account their rotatory inertia: exact solution. J. Sound Vib. 303(3–5), 895–908 (2007)

    Article  Google Scholar 

  3. Wu J.S., Chen C.T.: A continuous-mass TMM for free vibration analysis of a non-uniform beam with various boundary conditions and carrying multiple concentrated elements. J. Sound Vib. 311(3–5), 1420–1430 (2008)

    Article  Google Scholar 

  4. Wang J., Qiao P.: Vibration of beams with arbitrary discontinuities and boundary conditions. J. Sound Vib. 308(1–2), 12–27 (2007)

    Article  Google Scholar 

  5. Gürgöze M.: A note on the vibrations of restrained beams and rods with point masses. J. Sound Vib. 96(4), 461–468 (1984)

    Article  MATH  Google Scholar 

  6. Hamdan M.N., Jubran B.A.: Free and forced vibrations of a restrained uniform beam carrying an intermediate lumped mass and a rotary inertia. J. Sound Vib. 150(2), 203–216 (1991)

    Article  Google Scholar 

  7. Wu J.S., Lin T.L.: Free vibration analysis of a uniform cantilever beam with point masses by an analytical-and-numerical-combined method. J. Sound Vib. 136(2), 201–213 (1990)

    Article  MathSciNet  Google Scholar 

  8. Wu J.S., Chen D.W.: Dynamic analysis of a uniform cantilever beam carrying a number of elastically mounted point masses with damper. J. Sound Vib. 229(3), 549–578 (2000)

    Article  Google Scholar 

  9. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  10. Pakdemirli M., Nayfeh A.H.: Nonlinear vibrations of a beam-spring-mass system. J. Vib. Acoust. 116, 433–439 (1994)

    Article  Google Scholar 

  11. Pakdemirli M., Boyacı H.: Non-linear vibrations of a simple-simple beam with a non-ideal support in between. J. Sound Vib. 268, 331–341 (2003)

    Article  Google Scholar 

  12. Li S.R., Teng Z.C., Zhou Y.H.: Free vibration of heated Euler–Bernoulli beams with thermal post buckling deformations. J. Thermal Stress. 27, 843–856 (2004)

    Article  Google Scholar 

  13. Treyssede F.: Prebending effects upon the vibrational modes of thermally prestressed planar beams. J. Sound Vib. 307, 295–311 (2007)

    Article  Google Scholar 

  14. Pradeep V., Ganesan N., Bhaskar K.: Vibration and thermal buckling of composite sandwich beams with viscoelastic core. Compos. Struct. 81, 60–69 (2007)

    Article  Google Scholar 

  15. Sharnappa Ganesan N., Sethuraman R.: Dynamic modeling of active constrained layer damping of composite beam under thermal environment. J. Sound Vib. 305, 728–749 (2007)

    Article  Google Scholar 

  16. Xiang H.J., Yang J.: Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos. Part B Eng. 39, 292–303 (2008)

    Article  Google Scholar 

  17. Wu G.Y.: The analysis of dynamic instability and vibration motions of a pinned beam with transverse magnetic fields and thermal loads. J. Sound Vib. 284, 343–360 (2005)

    Article  Google Scholar 

  18. Manoach E., Ribeiro P.: Coupled, thermoelastic, large amplitude vibrations of Timoshenko beams. Int. J. Mech. Sci. 46, 1589–1606 (2004)

    Article  MATH  Google Scholar 

  19. Eisley J.G.: Nonlinear vibration of beams and rectangular plates. ZAMP 15, 167–175 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Srinivasan A.V.: Large amplitude-free oscillations of beams and plates. AIAA J. 3, 1951–1953 (1965)

    Article  Google Scholar 

  21. Wrenn B.G., Mayers J.: Nonlinear beam vibration with variable axial boundary restraint. AIAA J. 8, 1718–1720 (1970)

    Article  Google Scholar 

  22. Hu K., Kirmser P.G.: On the nonlinear vibrations of free-free beams. ASME J. Appl. Mech. 38, 461–466 (1971)

    Article  MATH  Google Scholar 

  23. Dowell E.H.: Component mode analysis of nonlinear and nonconservative systems. ASME J. Appl. Mech. 47, 172–176 (1980)

    Article  MATH  Google Scholar 

  24. Birman V.: On the effects of nonlinear elastic foundation on free vibration of beams. ASME J. Appl. Mech. 53, 471–473 (1986)

    Article  Google Scholar 

  25. Szemplinska-Stupnicka W.: The Behavior of Nonlinear Vibration Systems, vol. 2. Kluwer, Netherlands (1990)

    Book  Google Scholar 

  26. Özkaya E., Pakdemirli M., Öz H. R.: Non-linear vibrations of a beam-mass system under different boundary conditions. J. Sound Vib. 199, 679–696 (1997)

    Article  Google Scholar 

  27. Ghayesh, M.H., Alijani, F., Darabi, M.A.: An analytical solution for nonlinear dynamics of a viscoelastic beam-heavy mass system. J. Mech. Sci. Technol. (2011, in press)

  28. Chen L.Q., Yang X.D.: Steady state response of axially moving viscoelastic beams with pulsating speed: comparison of two nonlinear models. Int. J. Solids Struct. 42, 37–50 (2005)

    Article  MATH  Google Scholar 

  29. Chen L.Q., Yang X.D.: Vibration and stability of an axially moving viscoelastic beam with hybrid supports. Eur. J. Mech. 25, 996–1008 (2006)

    Article  MATH  Google Scholar 

  30. Chen L.Q., Tang Y.Q., Lim C.W.: Dynamic stability in parametric resonance of axially accelerating viscoelastic Timoshenko beams. J. Sound Vib. 329, 547–565 (2010)

    Article  Google Scholar 

  31. Ghayesh M.H.: Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide. J. Sound Vib. 314, 757–774 (2008)

    Article  Google Scholar 

  32. Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability of axially moving visco-elastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008)

    Article  MATH  Google Scholar 

  33. Ghayesh M.H.: Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech. Mach. Theory 44, 1964–1979 (2009)

    Article  MATH  Google Scholar 

  34. Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34, 2850–2859 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ghayesh M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010)

    Article  Google Scholar 

  36. Ghayesh M.H., Moradian N.: Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch. Appl. Mech. 81(6), 781–799 (2011)

    Article  Google Scholar 

  37. Ghayesh M.H., Yourdkhani M., Balar S., Reid T.: Vibrations and stability of axially traveling laminated beams. Appl. Math. Comput. 217, 545–556 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pakdemirli M., Ulsoy A.G., Ceranoglu A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 169((2), 179–196 (1994)

    Article  MATH  Google Scholar 

  39. Pakdemirli M., Ulsoy A.G.: Stability analysis of an axially accelerating string. J. Sound Vib. 203(5), 815–832 (1997)

    Article  Google Scholar 

  40. Pakdemirli M., Özkaya M.: Approximate boundary layer solution of a moving beam problem. Math. Comput. Appl. 3(2), 93–100 (1998)

    MATH  Google Scholar 

  41. Pakdemirli M., Öz H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311(3–5), 1052–1074 (2008)

    Article  Google Scholar 

  42. Thomsen J.J.: Vibrations and Stability, Advanced Theory, Analysis, and Tools. Springer, Berlin (2003)

    Google Scholar 

  43. Nayfeh A.H.: Problems in Perturbation. Wiley, New York (1993)

    Google Scholar 

  44. Kevorkian J., Cole J.D.: Perturbation Methods in Applied Mathematics. Springer, New York (1981)

    MATH  Google Scholar 

  45. Holmes M.H.: Introduction to Perturbation Methods. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghayesh, M.H., Kazemirad, S., Darabi, M.A. et al. Thermo-mechanical nonlinear vibration analysis of a spring-mass-beam system. Arch Appl Mech 82, 317–331 (2012). https://doi.org/10.1007/s00419-011-0558-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0558-4

Keywords

Navigation