Skip to main content
Log in

Modelling of in-plane wave propagation in a plate using spectral element method and Kane–Mindlin theory with application to damage detection

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents results of experimental and numerical analyses of in-plane waves propagating in a 5 mm-thick steel plate in the frequency range of 120–300 kHz. For such a thickness/frequency ratio, extensional waves reveal dispersive character. To model in-plane wave propagation taking into account the thickness-stretch effect, a novel 2D spectral element, based on the Kane–Mindlin theory, was formulated. An application of in-plane waves to damage detection is also discussed. Experimental investigations employing a laser vibrometer demonstrated that the position and length of a defect can precisely be identified by analysing reflected and diffracted waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli I., Lanza di Scalea F., Fateh M., Viola E.: Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. NDT & E Int. 38, 325–334 (2005)

    Article  Google Scholar 

  2. Bathe K.J.: Finite Element Procedures. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  3. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (1998)

    Google Scholar 

  4. Cawley P., Alleyne D.: The use of Lamb waves for the long range inspection of large structures. Ultrasonics 34, 287–290 (1996)

    Article  Google Scholar 

  5. Chróścielewski J., Rucka M., Witkowski W., Wilde K.: Formulation of spectral truss element for guided waves damage detection in spatial steel trusses. Arch. Civ. Eng. 55, 43–63 (2009)

    Google Scholar 

  6. Doyle J.F.: Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms. 2nd edn. Springer, New York (1997)

    MATH  Google Scholar 

  7. Giurgiutiu V.: Structural Health Monitoring with Piezoelectric Wafer Active Sensors. Academic Press, New York (2008)

    Google Scholar 

  8. Gopalakrishnan S., Chakraborty A., Mahapatra D.R.: Spectral Finite Element Method: Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures. Springer, London (2008)

    MATH  Google Scholar 

  9. Jin Z.H., Batra R.C.: A crack at the interface between a Kane–Mindlin plate and a rigid substrate. Eng. Fract. Mech. 57, 343–354 (1997)

    Article  Google Scholar 

  10. Jin Z.H., Batra R.C.: Dynamic fracture of a Kane–Mindlin plate. Theor. Appl. Fract. Mech. 26, 199–209 (1997)

    Article  Google Scholar 

  11. Kane T.R., Mindlin R.D.: High-frequency extensional vibrations of plates. J. Appl. Mech. 23, 277–283 (1956)

    MathSciNet  MATH  Google Scholar 

  12. Komatitsch D., Martin R., Tromp J., Taylor M.A., Wingate B.A.: Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. J. Comput. Acoust. 9, 703–718 (2001)

    Article  Google Scholar 

  13. Kotousov A., Wang CH.: Three-dimensional stress constraint in an elastic plate with a notch. Int. J. Solids Struct. 39, 4311–4326 (2002)

    Article  MATH  Google Scholar 

  14. Kotousov A.: Fracture in plates of finite thickness. Int. J. Solids Struct. 44, 8259–8273 (2007)

    Article  MATH  Google Scholar 

  15. Kudela P., Żak A., Krawczuk M., Ostachowicz W.: Modelling of wave propagation in composite plates using the time domain spectral element method. J. Sound Vib. 302, 728–745 (2007)

    Article  Google Scholar 

  16. Lee B.C., Staszewski W.J.: Modelling of Lamb waves for damage detection in metallic structures: part I. Wave propagation. Smart Mater. Struct. 12, 804–814 (2003)

    Article  Google Scholar 

  17. Lee B.C., Staszewski W.J.: Modelling of Lamb waves for damage detection in metallic structures: part II. Wave interactions with damage. Smart Mater. Struct. 12, 815–824 (2003)

    Article  Google Scholar 

  18. McKeon J.C.P., Hinders M.K.: Lamb wave scattering from a through hole. J. Sound Vib. 224, 843–862 (1999)

    Article  Google Scholar 

  19. Mindlin, R.D., Herrmann, G.: A one dimensional theory of compressional waves in an elastic rod. Proceedings of First US National Congress of Applied Mechanics, pp. 187–191 (1950)

  20. Moser F., Jacobs L.J., Qu J.: Modeling elastic wave propagation in waveguides with the finite element method. NDT & E Int. 32, 225–234 (1999)

    Article  Google Scholar 

  21. Peng H., Meng G., Li F.: Modeling of wave propagation in plate structures using three-dimensional spectral element method for damage detection. J. Sound Vib. 320, 942–954 (2009)

    Article  Google Scholar 

  22. Rucka M.: Experimental and numerical studies of guided wave damage detection in bars with structural discontinuities. Arch. Appl. Mech. 80, 1371–1390 (2010)

    Article  Google Scholar 

  23. Rucka M.: Experimental and numerical study on damage detection in an L-joint using guided wave propagation. J. Sound Vib. 329, 1760–1779 (2010)

    Article  Google Scholar 

  24. Wang C.H., Chang F.-K.: Scattering of plate waves by a cylindrical inhomogeneity. J. Sound Vib. 282, 429–451 (2005)

    Article  Google Scholar 

  25. Yang Y., Cascante G., Polak M.A.: Depth detection of surface-breathing crack in concrete plates using fundamental Lamb modes. NDT & E Int. 42, 501–512 (2009)

    Article  Google Scholar 

  26. Yu L., Giurgiutiu V.: In situ 2-D piezoelectric wafer active sensors array for guided wave damage detection. Ultrasonics 48, 117–134 (2008)

    Article  Google Scholar 

  27. Żak A., Krawczuk M., Ostachowicz W.: Propagation of in-plane waves in an isotropic panel with a crack. Finite Elem. Anal. Des. 42, 929–941 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Rucka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rucka, M. Modelling of in-plane wave propagation in a plate using spectral element method and Kane–Mindlin theory with application to damage detection. Arch Appl Mech 81, 1877–1888 (2011). https://doi.org/10.1007/s00419-011-0524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-011-0524-1

Keywords

Navigation