Skip to main content
Log in

Fracture dynamics problem on mode I semi-infinite crack

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

By means of the theory of complex functions, fracture dynamics problems concerning mode I semi-infinite crack were studied. Analytical solutions of stress, displacement and dynamic stress intensity factor under the action of moving increasing loads Pt 3/x 3Px 3/t 2, respectively, are very easily obtained using the ways of self-similar functions. The correlative closed solutions are attained based on the Riemann–Hilbert problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charepanov G.P.: Mechanics of Brittle Fracture, pp. 732–792. Nauka, Moscow (1973)

    Google Scholar 

  2. Hasebe N., Inohara S.: Stress analysis of a semi-infinite plate with an oblique edge crack. Ingen. Arch. 49(1), 51–62 (1980)

    Article  MATH  Google Scholar 

  3. Hasebe N.: An edge crack in semi-infinite plate welded to a rigid stiffener. Proc. Jpn. Soc. Civ. Engrs. 314(10), 149–157 (1981)

    Google Scholar 

  4. Yi-Zhou C., Hasebe N.: An edge crack problem in a semi-infinite plane subjected to concentrated forces. App. Math. Mech. 22(11), 1279–1290 (2001)

    Article  Google Scholar 

  5. Matbluly M.S., Nassar M.: Elastostatic analysis of edge cracked orthotropic strips. Acta Mech. 165(1–2), 17–25 (2003)

    Article  Google Scholar 

  6. Freund L.B.: Dynamic Fracture Mechanics. Cambridge University Press, UK (1990)

    Book  MATH  Google Scholar 

  7. Xuefeng Y., Guanchang J. et al.: Experimental studies on dynamic fracture behavior of thin plates with parallel single edge cracks. Polym. Test. 21(8), 933–940 (2002)

    Article  Google Scholar 

  8. Sih G.C., MacDonald B.: Fracture of mechanics applied to engineering problems. Strain energy density fracture criterion. Eng. Frac. Mech. 6(2), 361–386 (1974)

    Article  Google Scholar 

  9. Rice, J.R.: Comment on stress in an infinite strip containing a semi-infinite cracks J. App. Mech. (34), 248–249 (1967)

  10. Hartranft, R.J., Sih, G.C.: Alternating method applied to edge and surface crack problems[A]. In: Sih, G.C. (ed.) Mech. Frac [C], vol. 1, pp. 177–238 (1973)

  11. Solommer, E., Soltesz, U.: Crack-opening-displacement measurements of a dynamically loaded crack. Eng. Frac. Mech. (2), 235–241 (1971)

  12. Sih G.C.: Handbook of Stress Intensity Factors. Inst. Frac. Solid. Mech. Lehigh University, Bethlehem, Pa (1973)

    Google Scholar 

  13. Charepanov G.C., Afanasov E.F.: Some dynamic problems of the theory of elasticity—A review. Int. J. Engng. Sci. 12, 665–690 (1970)

    Article  Google Scholar 

  14. Baker B.R.: Dynamic stresses created by moving crack. J. App. Mech. 29(3), 449–458 (1962)

    MATH  Google Scholar 

  15. Muskhelishvili N.I.: Singular Integral Equations[M]. Nauka, Moscow (1968)

    Google Scholar 

  16. Muskhelishvili N.I.: Some Fundamental Problems in the Mathematical Theory of Elasticity[M]. Nauka, Moscow (1968)

    Google Scholar 

  17. Atkinson, C.: The propagation of a brittle crack in anisotropic material. Int. J. Engng Sci. (3), 77–91 (1965)

  18. Nian-Chun L., Jin C., Yun-Hong C.: Models of fracture dynamics of bridging fiber pull-out of composite materials. Mech. Res. Commun. 32(1), 1–14 (2005)

    Article  Google Scholar 

  19. Lü N.C., Cheng Y.H., Li X.G., Cheng J.C.: Dynamic propagation problem of mode I semi-infinite crack subjected to superimpose loads[J]. Fati. Frac. Eng. Mater. Struct. 33(1), 141–148 (2010)

    Article  Google Scholar 

  20. Hoskins, R.F.: Generalized Functions. Ellis Horwood (1979)

  21. Gahov F.D.: Boundary-Value Problems. Fitzmatigiz, Moscow (1963)

    Google Scholar 

  22. Xie-shan, W.: Singular functions and their applications in mechanics [M]. Scientific Press, Beijing, pp. 3–45 (1993) (in Chinese)

  23. Sih, G.C.: Mechanics of Fracture 4. Elastodynamics Crack Problems, pp. 213—247. Noordhoff, Leyden (1977)

  24. Kanwal R.P., Sharma D.L.: Singularity methods for elastostatics. J. Elast. 6(4), 405–418 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  25. Editorial group of mathematics handbook (2002) Mathematics Handbook[M]. Advanced Education Press, Beijing, pp. 244–300 (in Chinese)

  26. Teaching office of mathematics of Tongji University (1994) Advanced Mathematics, vol. 1 [M]. Advanced Education Press, Beijing, pp. 167–172 (in Chinese)

  27. Nian-Chun L., Yun-Hong C., Jin C.: An asymmetrical self-similar dynamic crack model of bridging fiber pull-out in unidirectional composite materials. Int. J. Comput. Methods Eng. Sci. Mech. 9(3), 171–179 (2008)

    Article  Google Scholar 

  28. Lü N.C., Cheng Y.H., Si H.L., Cheng J.: Dynamics of asymmetrical crack propagation in composite materials. Theo. App. Frac. Mech. 47(3), 260–273 (2007)

    Article  Google Scholar 

  29. Lü N.C., Cheng Y.H., Cheng J.: Mode I crack tips propagating at different speeds under differential surface tractions. Theo. App. Frac. Mech. 46(3), 262–275 (2006)

    Article  Google Scholar 

  30. Kalthof, J.F., Beinert, J., Winkler, S.: Measurements of dynamic stress intensity factors for fastrunning and arresting cracks in double-cantilever-beam specimens[M1]. In: Fast Fracture and crack Arrest ASTM STP 627, pp. 161–176. Pa Publisher, Philadelphia (1977)

  31. Kobayashi, A.S.: Dynam ic fracture analysis by dynamic finite element method=.generation and prediction analyses[M]. In: Nonlinear and Dynarnic Fracture Mechanics. vol. 35, pp. 19–36. AMD. ASME, NY Publisher, New York (1979)

  32. Ravi-Chandar K., Knauss W.G.: An experimental investigation into dynamic fracture: part 1, crack initiation and arrest[J1]. Intern. J. Fract. 25(41), 247–262 (1984)

    Article  Google Scholar 

  33. Ravi-Chandar K., Knauss W.G.: An experimental investigation into dynamic fracture: part 2, microstructural aspects[J1]. Intern. J. Fract. 26(11), 65–80 (1984)

    Article  Google Scholar 

  34. Ravi-Chandar K., Knauss W.G.: An experimental investigation into dynamic fracture: part 3, on steady-state crack propagation and crack branching[J]. Intern. J. Fract. 26(2), 141–152 (1984)

    Article  Google Scholar 

  35. Ravi-Chandar K., Knauss W.G.: An experimental investigation into dynamic fracture: part 4, on the interaction of stress waves with propagation cracks[J]. Intern. J. Fract. 26(3), 189–200 (1984)

    Article  Google Scholar 

  36. Sneddon N.I.: Fourier Transform[M]. McGraw-Hill, New York (1951)

    Google Scholar 

  37. Muskhelishvili N.I.: Some Basic Problems from the Mathematical Theory of Elasticity[M]. P. Noordoff, Groningen- Holland (1953)

    Google Scholar 

  38. Galin L.A.: Contact Problems in Elasticity Theory[M]. GITTL, Moscow (1953)

    Google Scholar 

  39. Broberg K.B.: The propagation of a brittle crack. Arch. für Physik. 18(2), 159–192 (1960)

    MathSciNet  Google Scholar 

  40. Lü N.C., Cheng Y.H., Xu H.M., Cheng J., Tang L.Q.: Dynamic crack models on problems of bridging fiber pull-out of composite materials. App. Math. Mech. 25(10), 1194–1202 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Chun Lü.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, N.C., Li, X.G., Cheng, Y.H. et al. Fracture dynamics problem on mode I semi-infinite crack. Arch Appl Mech 81, 1181–1193 (2011). https://doi.org/10.1007/s00419-010-0476-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0476-x

Keywords

Navigation