Skip to main content

Advertisement

Log in

Construction of approximate analytical solutions to strongly nonlinear damped oscillators

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

An analytical approximate method for strongly nonlinear damped oscillators is proposed. By introducing phase and amplitude of oscillation as well as a bookkeeping parameter, we rewrite the governing equation into a partial differential equation with solution being a periodic function of the phase. Based on combination of the Newton’s method with the harmonic balance method, the partial differential equation is transformed into a set of linear ordinary differential equations in terms of harmonic coefficients, which can further be converted into systems of linear algebraic equations by using the bookkeeping parameter expansion. Only a few iterations can provide very accurate approximate analytical solutions even if the nonlinearity and damping are significant. The method can be applied to general oscillators with odd nonlinearities as well as even ones even without linear restoring force. Three examples are presented to illustrate the usefulness and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cole J.D.: Perturbation Methods in Applied Mathematics. Blaisdell, Waltham (1968)

    MATH  Google Scholar 

  2. Nayfeh A.H., Mook D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  3. Hagedorn P.: Nonlinear Oscillations. Clarendon, Oxford (1988)

    Google Scholar 

  4. Mickens R.E.: Oscillations in Planar Dynamic Systems. World Scientific, Singapore (1996)

    Book  MATH  Google Scholar 

  5. Cheung Y.K., Chen S.H., Lau S.L.: A modified lindstedt–poincaré method for certain strongly non-linear oscillators. Int. J. Nonlin. Mech. 26, 367–378 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Senator M., Bapat C.N.: A perturbation technique that works even when the non-linearity is not small. J. Sound Vib. 164, 1–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amore P., Aranda A.: Presenting a new method for the solution of nonlinear problems. Phys. Lett. A 316, 218–225 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu B.S., Lim C.W., Li P.S.: A generalization of the senator-bapat method for certain strongly nonlinear oscillators. Phys. Lett. A 341, 164–169 (2005)

    Article  Google Scholar 

  9. Sun W.P., Wu B.S., Lim C.W.: A modified lindstedt–poincaré method for strongly mixed-parity nonlinear oscillators. ASME J. Comput. Nonlin. Dynam. 2, 141–145 (2007)

    Article  Google Scholar 

  10. Mickens R.E., Oyedeji K.: Construction of approximate analytical solutions to a new class of non-linear oscillator equation. J. Sound Vib. 102, 579–582 (1985)

    Article  MathSciNet  Google Scholar 

  11. Barkham P.G.D., Soudack A.C.: An extension to the method of krylov and bogoliuboff. Int. J. Control 10, 377–392 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cap F.F.: Averaging method for the solution of nonlinear differential equations with periodic non-harmonic solutions. Int. J. Nonlin. Mech. 9, 441–450 (1974)

    Article  MATH  Google Scholar 

  13. Yuste S.B., Bejarano J.D.: Improvement of a krylov-bogoliubov method that uses Jacobi elliptic functions. J. Sound Vib. 139, 151–163 (1990)

    Article  MATH  Google Scholar 

  14. Das S.L., Chatterjee A.: Multiple scales via galerkin projections: approximate asymptotics for strongly nonlinear oscillations. Nonlinear Dynam. 32, 161–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chatterjee A.: Harmonic balance based averaging: approximate realizations of an asymptotic technique. Nonlinear Dynam. 32, 323–343 (2003)

    Article  MATH  Google Scholar 

  16. Nandakumar K., Chatterjee A.: Higher-order pseudoaveraging via harmonic balance for strongly nonlinear oscillations. ASME J. Vib. Acoust. 127, 416–419 (2005)

    Article  Google Scholar 

  17. Lim C.W., Lai S.K.: Accurate higher-order analytical approximate solutions to nonconservative nonlinear oscillators and application to van der pol damped oscillators. Int. J. Mech. Sci. 48, 483–492 (2006)

    Article  MATH  Google Scholar 

  18. Yamgoué S.B., Kofané T.C.: On the analytical approximation of damped oscillations of autonomous single degree of freedom oscillators. Int. J. Nonlin. Mech. 41, 1248–1254 (2006)

    Article  MATH  Google Scholar 

  19. Lau S.L., Cheung Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic system. ASME J. Appl. Mech. 48, 959–964 (1981)

    Article  MATH  Google Scholar 

  20. Mickens R.E.: A generalization of the method of harmonic balance. J. Sound Vib. 111, 515–518 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu B.S., Li P.S.: A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36, 167–176 (2001)

    Article  MATH  Google Scholar 

  22. Wu B.S., Sun W.P., Lim C.W.: An analytical approximate technique for a class of strongly nonlinear oscillators. Int. J. Nonlin. Mech. 41, 766–774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mickens R.E.: Comments on the method of harmonic-balance. J. Sound Vib. 94, 456–460 (1984)

    Article  MathSciNet  Google Scholar 

  24. Yuste S.B.: Comments on the method of harmonic-balance in which Jacobi elliptic functions are used. J. Sound Vib. 145, 381–390 (1991)

    Article  Google Scholar 

  25. Rao A.V., Rao B.N.: Some remarks on the harmonic-balance method for mixed-parity nonlinear oscillations. J. Sound Vib. 170, 571–576 (1994)

    Article  MATH  Google Scholar 

  26. Gottlieb H.P.W.: On the harmonic balance method for mixed-parity nonlinear oscillations. J. Sound Vib. 152, 189–191 (1992)

    Article  MATH  Google Scholar 

  27. Wu B.S., Li P.S.: A new approach to nonlinear oscillations. ASME J. Appl. Mech. 68, 951–952 (2001)

    Article  MATH  Google Scholar 

  28. Wu B.S., Lim C.W.: Large amplitude nonlinear oscillations of a general conservative system. Int. J. Nonlin. Mech. 39, 859–870 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sun W.P., Wu B.S.: Accurate analytical approximate solutions to general nonlinear oscillators. Nonlinear Dynam. 51, 277–287 (2008)

    Article  MATH  Google Scholar 

  30. Yamgoué S.B., Kofané T.C.: Linearized harmonic balance based derivation of slow flow for some class of autonomous single degree of freedom oscillators. Int. J. Nonlin. Mech. 43, 993–999 (2008)

    Article  Google Scholar 

  31. Obi C.: Researches on the equation \({\ddot {x}+(\varepsilon _1 +\varepsilon _2 x)\dot {x}+x+ \varepsilon _3 x^{2}=0}\). Proc. Cambridge Philos. Soc. 50, 26–32 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  32. Witten M., Siegel D.: A kinetics model of abrin binding in a virus transformed lymphocyte cell culture. Bull. Math. Biol. 44, 453–476 (1982)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B.S., Sun, W.P. Construction of approximate analytical solutions to strongly nonlinear damped oscillators. Arch Appl Mech 81, 1017–1030 (2011). https://doi.org/10.1007/s00419-010-0465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0465-0

Keywords

Navigation