Archive of Applied Mechanics

, Volume 81, Issue 7, pp 925–942 | Cite as

Elements of study on dynamic materials

  • Martine RousseauEmail author
  • Gérard A. Maugin
  • Mihhail Berezovski


As a preliminary study to more complex situations of interest in small-scale technology, this paper envisages the elementary propagation properties of elastic waves in one-spatial dimension when some of the properties (mass density, elasticity) may vary suddenly in space or in time, the second case being of course more original. Combination of the two may be of even greater interest. Toward this goal, a critical examination of what happens to solutions at the crossing of pure space-like and time-like material discontinuities is given together with simple solutions for smooth transitions and numerical simulations in the discontinuous case. The effects on amplitude, speed of propagation, frequency changes and the appearance of a Doppler-like effect are demonstrated although the whole physical system remains linear.


Dynamic materials Wave propagation Elasticity Inhomogeneity Interfaces Doppler effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blekhman I.I., Lurie K.A.: On dynamic materials. Doklady Akademii Nauk. 371, 182–185 (2000) (in Russian)MathSciNetGoogle Scholar
  2. 2.
    Lurie K.A.: Introduction to the Mathematical Theory of Dynamic Materials. Springer, New York (2007)zbMATHGoogle Scholar
  3. 3.
    Vesnitskii A.I., Metrikine A.V.: Transition radiation in mechanics. Physics-Uspekhi 39, 983–1007 (1996) (in English)CrossRefGoogle Scholar
  4. 4.
    Ginzburg V.L., Tsytovich, V.N.: Several problems of the theory of transition radiation and transition scattering. Phys. Rep. 49, 1–89 (1979) (in English) [Original Russian in: Usp.Fiz.Nauk. 126, 553 (1978)]Google Scholar
  5. 5.
    Nadin G.: Traveling fronts in space-time periodic media. J. Math. Pures Appl. 92, 232–262 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Indeitsev D.A., Osipova E.V.: Localization of nonlinear waves in elastic bodies with inclusions. Acoust. Phys. 50(4), 420–426 (2004)CrossRefGoogle Scholar
  7. 7.
    Epstein M., Maugin G.A.: Thermomechanics of volumetric growth in uniform bodies. Int. J. Plast. 16, 951–978 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Maugin G.A.: On inhomogeneity, growth, ageing and dynamic materials. J. Mech. Materials. Struct. 4(4), 731–741 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Epstein M., Maugin G.A.: Remarks on the universality of the Eshelby stress. Math. Mech. Solids 15(1), 37–143 (2010)CrossRefGoogle Scholar
  10. 10.
    Maugin G.A.: Material Inhomogeneities in Elasticity. Chapman and Hall, London (1993)zbMATHGoogle Scholar
  11. 11.
    Maugin G.A.: Nonlinear kinematic wave mechanics of elastic solids. Wave Motion 44(6), 472–481 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Maugin G.A.: On phase, action and canonical conservation laws in kinematic-wave theory. Low Temperature Physics (Issue dedicated to the late A.M.Kosevich) 34(7), 571–574 (2008)Google Scholar
  13. 13.
    Lanczos C.: Variational Principles in Mechanics. Toronto University Press, Toronto (1962)Google Scholar
  14. 14.
    Maugin G.A.: On canonical equations of continuum thermomechanics. Mech. Res. Com. 33, 705–710 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Knops R.J., Trimarco C., Williams H.T.: Uniqueness and complementary energy in nonlinear elastostatics. Meccanica 38, 519–534 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hayes W.D.: Introduction to wave propagation. In: Leibovich, S., Seebass, A.R. (eds) Nonlinear Waves, pp. 1–43. Cornell University Press, Ithaca (1974)Google Scholar
  17. 17.
    Didenkulova I., Pelinovski E., Soomere T.: Exact travelling wave solutions in strongly inhomogeneous media. Estonian J. Eng. 14, 220–231 (2008)CrossRefGoogle Scholar
  18. 18.
    Ericksen J.L.: Introduction to the Thermodynamics of Solids. Chapman & Hall, London (1991)zbMATHGoogle Scholar
  19. 19.
    Berezovski A., Berezovski M., Engelbrecht J.: Numerical simulation of nonlinear elastic wave propagation in piecewise homogeneous media. Mater. Sci. Eng. A 418, 364–369 (2006)CrossRefGoogle Scholar
  20. 20.
    Berezovski A., Engelbrecht J., Maugin G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)zbMATHCrossRefGoogle Scholar
  21. 21.
    Lurie K.A., Weekles S.L.: Wave propagation and energy exchange in spatio-temporal material composite with rectangular microstructure. J. Math. Anal. Appl. 314, 286–310 (2006)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Lurie, K.A., Onofrei, D.: Mathematical analysis of the energy concentration in wave travelling through a rectangular material structure in space-time. Prod. ENOC-2008, Saint - Petersburg, 5 pages (July 2005)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Martine Rousseau
    • 1
    Email author
  • Gérard A. Maugin
    • 1
  • Mihhail Berezovski
    • 2
  1. 1.Université Pierre et Marie Curie, Institut Jean Le Rond d’Alembert, UMR CNRS 7190Paris Cedex 05France
  2. 2.Tallinn University of Technology, Center for Nonlinear ScienceTallinnEstonia

Personalised recommendations