Archive of Applied Mechanics

, Volume 81, Issue 7, pp 907–924 | Cite as

Characterization of hole-diameter in thin metallic plates perforated by spherical projectiles using genetic algorithms

  • H. Abbas
  • S. H. Alsayed
  • T. H. Almusallam
  • Y. A. Al-Salloum
Original

Abstract

The empirical and semi-empirical models available in literature for the estimation of hole-diameter in thin metallic plates by the strike of spherical projectile are mostly valid for the data for which these have been developed. This may be partly attributed to the form of the model employed for their development. The behavioural constraints and the limiting conditions are not satisfied by these models. In the present paper, some of the non-dimensional models have been developed that satisfy the behavioural constraints and limiting conditions. The data used in the development of earlier statistical models has been reanalyzed for the development of new models for the characterization of hole-diameter with a view towards seeing whether better characterization is possible. The genetic algorithm coupled with the penalty function method has been used for the constrained optimization of model parameters that result in low errors and high correlation coefficients.

Keywords

Genetic algorithm Hole-diameter Projectile Hypervelocity impact Spherical projectile 

List of symbols

cp, ct

Speed of sound in projectile and target materials, respectively

ρp, ρt

Density of projectile and target materials, respectively

Dp

Diameter of spherical projectile

Dh

Hole-diameter in target plate

Tt

Target thickness

V

Velocity of strike of projectile

σUS

Shear strength of the target material

θ

Angle of strike or spray angle of projectile

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klinkrad H.: Space Debris—Models and Risk Analysis. Springer, Berlin (2006)Google Scholar
  2. 2.
    Chhabildas, L.C., Hertel, E.S., Jr. Reinhart, W.D., Miller, R.M.: Whipple Bumper Shield and CTH Simulations at Velocities in Excess of 10 km/s. SANDIA report SAND91-2683 (1992)Google Scholar
  3. 3.
    Whipple F.L.: Meteorites and space travel. Astron. J. 52(116), 131 (1947)CrossRefGoogle Scholar
  4. 4.
    De Chant, L.J.: A High Velocity Plate Penetration Hole Diameter Relationship Based on Late Time Stagnation Point Flow Concepts. Unpublished manuscript, Available from ljdecha@sandia.gov (2004a)Google Scholar
  5. 5.
    De Chant, L.J.: Validation of a computational implementation of the Grady–Kipp dynamic fragmentation theory for thin metal plate impacts using an analytical strain-rate model and hydrodynamic analogues. Mech. Mater. (2004b, in press)Google Scholar
  6. 6.
    De Chant L.J.: A explanation for the minimal effect of body curvature on hypervelocity penetration hole formation. Int. J. Solids Struct. 41, 4163–4177 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Hill S.A.: Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact. Int. J. Impact Eng. 30, 303–321 (2004)CrossRefGoogle Scholar
  8. 8.
    Garadner D.J., McDonnel J.M., Collier I.: Hole growth characterisation for hypervelocity impacts in thin targets. Int. J. Impact Eng. 19(7), 589–602 (1997)CrossRefGoogle Scholar
  9. 9.
    Schonberg W.P.: Hypervelocity impact penetration phenomena in Aluminum space structures. J. Aerosp. Eng. 3(3), 173–185 (1990)CrossRefGoogle Scholar
  10. 10.
    Hosseini M., Abbas H.: Neural network approach for estimation of hole-diameter in thin plates perforated by spherical projectiles. Thin-Walled Struct. 46(6), 592–601 (2008)CrossRefGoogle Scholar
  11. 11.
    Forrest S.: Genetic algorithms. ACM Comput. Surv. 28(1), 77–80 (1996)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Maiden C.J., Gehring J.W., McMillan A.R.: Investigation of fundamental mechanism of damage to thin targets by hypervelocity projectiles. In: General Motors Corporation Final Report No. TR63-225 GM Defense Research Laboratory, Santa Barbara (1963)Google Scholar
  13. 13.
    McMillan A.R.: Experimental Investigations of Simulated Meteoroid Damage to Various Spacecraft Structures. NASA CR-915, Washington (1968)Google Scholar
  14. 14.
    Herrmann, W., Jones, A.H.: Survey of Hypervelocity Impact Information. Massachusetts Institute of Technology, ASRL Report No. 99-1 (1961)Google Scholar
  15. 15.
    Tipton, J.: HULL Hydrocode Analysis Results Presented at NASA/MSFC WP01 Meteoroid/Orbital Debris Working Group, NASA Purchase Order, USACOE, Huntsville, Alabama (1991–1993)Google Scholar
  16. 16.
    Piekutowski A.J.: Formation and Description of Debris Clouds Produced by Hypervelocity Impact. NASA CR-4707, Washington (1996)Google Scholar
  17. 17.
    Piekutowski A.J.: Holes produced in thin aluminum sheets by the hypervelocity impact of aluminum spheres. Int. J. Impact Eng. 23, 711–722 (1999)CrossRefGoogle Scholar
  18. 18.
    Edwards M.R., Mathewson A.: The ballistic properties of tool steel as a potential improvised armour plate. Int. J. Impact Eng. 19(4), 297–309 (1997)CrossRefGoogle Scholar
  19. 19.
    Atkins A.G., Khan M.A., Liu J.H.: Necking and radial cracking around perforations in thin sheets at normal incidence. Int. J. Impact Eng. 21(7), 521–539 (1998)CrossRefGoogle Scholar
  20. 20.
    Wierzbicki T.: Petalling of plates under explosive and impact loading. Int. J. Impact Eng. 22, 935–954 (1999)CrossRefGoogle Scholar
  21. 21.
    Shen W.Q., Rieve R.O., Baharun B.: A study on the failure of circular plates struck by masses. Part 1: experimental results. Int. J. Impact Eng. 27, 399–412 (2002)CrossRefGoogle Scholar
  22. 22.
    Lee Y.W., Wierzbicki T.: Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling. Int. J. Impact Eng. 31, 1277–1308 (2005)CrossRefGoogle Scholar
  23. 23.
    Piekutowski A.J.: Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminium plates. Int. J. Impact Eng. 5(1–4), 509–518 (1987)CrossRefGoogle Scholar
  24. 24.
    Teng X., Wierzbicki T., Hiermaier S., Rohr I.: Numerical prediction of fracture in the Taylor test. Int. J. Solids Struct. 42, 2929–2948 (2005)MATHCrossRefGoogle Scholar
  25. 25.
    Fleming P., Purshouse R.C.: Evolutionary algorithms in control systems engineering: a survey. Control Eng. Practice 10, 1223–1241 (2002)CrossRefGoogle Scholar
  26. 26.
    Mitchell M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)Google Scholar
  27. 27.
    Schulze-Kremer S.: Molecular Bioinformatics—Algorithms and Applications. de Gruyter, New York (1995)Google Scholar
  28. 28.
    Kitano, H.: Empirical studies on the speed of convergence of neural network training using genetic algorithms. In: AAAI-90 ProceedingsGoogle Scholar
  29. 29.
    Michalewicz Z.: Genetic Algorithms + Data Structures = Evolution Programs. 2nd edn. Springer, New York (1994)MATHGoogle Scholar
  30. 30.
    Maiden C.J., Gehring J.W., McMillan A.R.: Investigation of Fundamental Mechanism of Damage to Thin Targets by Hypervelocity Projectiles. NASA TR63-225, GM Defense Research Laboratory, Washington (1963)Google Scholar
  31. 31.
    Sawle, D.R.: Hypervelocity Impact in Thin Sheets, Semi-Infinite Targets at 15 km/s. AIAA Paper No. 69-378, AIAA Hypervelocity Impact Conference, Cincinnati (1969)Google Scholar
  32. 32.
    Sorenson, N.R.: Systematic investigation of crater formations in metals. In: Proceedings of the 7th Hypervelocity Impact Symposium, vol. 6, pp. 281–325 (1964)Google Scholar
  33. 33.
    Nysmith C.R., Denardo B.P.: Experimental Investigation of the Momentum Transfer Associated with Impact into Thin Aluminum Targets. NASA TND-5492, Washington (1969)Google Scholar
  34. 34.
    Hosseini M., Abbas H.: Growth of hole in thin plates under hypervelocity impact of spherical projectiles. J. Thin-Walled Struct. 44(9), 1006–1016 (2006)CrossRefGoogle Scholar
  35. 35.
    Rolsten R.F., Wellnitz J.N., Hunt H.H.: An example of hole diameter in thin plates due to hypervelocity impact. J. APPl. Phys. 34(3), 556–559 (1964)CrossRefGoogle Scholar
  36. 36.
    Carey, W.C., McDonnell, J.A.M., Dixon, DG.: Capture cells: decoding the impacting projectile parameters. In: Lunar and Planetary Science Conference XVIth, Abstracts (1985)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • H. Abbas
    • 1
  • S. H. Alsayed
    • 1
  • T. H. Almusallam
    • 1
  • Y. A. Al-Salloum
    • 1
  1. 1.Specialty Units for Safety and Preservation of Structures, College of EngineeringKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations