Skip to main content
Log in

Nonlinear dynamic response of axially moving, stretched viscoelastic strings

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The dynamical response of axially moving, partially supported, stretched viscoelastic belts is investigated analytically in this paper. The Kelvin–Voigt viscoelastic material model is considered and material, not partial, time derivative is employed in the viscoelastic constitutive relation. The string is considered as a three part system: one part resting on a nonlinear foundation and two that are free to vibrate. The tension in the belt span is assumed to vary periodically over a mean value (as it occurs in real mechanisms), and the corresponding equation of motion is derived by applying Newton’s second law of motion for an infinitesimal element of the string. The method of multiple scales is applied to the governing equation of motion, and nonlinear natural frequencies and complex eigenfunctions of the system are obtained analytically. Regarding the resonance case, the limit-cycle of response is formulated analytically. Finally, the effects of system parameters such as axial speed, excitation characteristics, viscousity and foundation modulus on the dynamical response, natural frequencies and bifurcation points of system are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wickert J.A., Mote C.D. Jr: Classical vibration analysis of axially moving continua. J. Appl. Mech. 57, 738–744 (1990)

    Article  MATH  Google Scholar 

  2. Yuh J., Young T.: Dynamical modelling of an axially moving beam in rotation: simulation and experiment. J. Dyn. Syst. Meas. Control 113, 34–40 (1994)

    Article  Google Scholar 

  3. Pakdemirli M., Ulsoy A.G., Ceranoglu A.: Transverse vibration of an axially accelerating string. J. Sound Vib. 169(2), 179–196 (1994)

    Article  MATH  Google Scholar 

  4. Pakdemirli M., Ulsoy A.G.: Stability analysis of an axially accelerating string. J. Sound Vib. 203(5), 815–832 (1997)

    Article  Google Scholar 

  5. Pakdemirli M., Ozkaya E.: Approximate boundary layer solution of a moving beam problem. Math. Comput. Appl. 2(3), 93–100 (1998)

    Google Scholar 

  6. Chen L.Q., Yang X.D.: Stability in parametric resonance of axially moving viscoelastic beams with time-dependent speed. J. Sound Vib. 284, 879–891 (2005)

    Article  Google Scholar 

  7. Chen L.Q., Yang X.D.: Vibration and stability of an axially moving visco-elastic beam with hybrid supports. Eur. J. Mech. 25, 996–1008 (2006)

    Article  MATH  Google Scholar 

  8. Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability of axially moving viscoelastic Rayleigh beams. Int. J. Solids Struct. 45, 6451–6467 (2008)

    Article  MATH  Google Scholar 

  9. Ghayesh M.H., Balar S.: Non-linear parametric vibration and stability analysis for two dynamic models of axially moving Timoshenko beams. Appl. Math. Model. 34, 2850–2859 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ghayesh M.H.: Nonlinear transversal vibration and stability of an axially moving viscoelastic string supported by a partial viscoelastic guide. J. Sound Vib. 314, 757–774 (2008)

    Article  Google Scholar 

  11. Ghayesh M.H.: Parametric vibrations and stability of an axially accelerating string guided by a non-linear elastic foundation. Int. J. Non-Linear Mech. 45, 382–394 (2010)

    Article  Google Scholar 

  12. Pellicano F., Vestroni F.: Nonlinear dynamics and bifurcations of an axially moving beam. J. Vib. Acoust. 122, 21–30 (2000)

    Article  Google Scholar 

  13. Chen L.Q., Zhang N.H., Zu J.W.: Bifurcation and chaos of an axially moving visco-elastic strings. Chaos Solitons Fractals 29, 81–90 (2002)

    MATH  Google Scholar 

  14. Zhu W.D., Guo B.Z.: Free and forced vibration of an axially moving string with an arbitrary velocity profile. J. Appl. Mech. 65, 901–907 (1998)

    Article  Google Scholar 

  15. Fung R.-F., Tseng C.-C.: Boundary control of an axially moving string via lyapunov method. J. Dyn. Syst., Meas., Control 121, 105–110 (1999)

    Article  Google Scholar 

  16. Chen L.Q., Zhao W.J., Zu J.W.: Simulations of the transverse vibration of an axially moving string: a modified difference approach. Appl. Math. Comput. 166, 596–607 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mockensturm E.M., Guo J.: Nonlinear vibration of parametrically excited, viscoelastic, axially moving strings. J. Appl. Mech. 72, 374–380 (2005)

    Article  MATH  Google Scholar 

  18. Kartik V., Wickert J.A.: Vibration and guiding of moving media with edge weave imperfections. J. Sound Vib. 291, 419–436 (2006)

    Article  Google Scholar 

  19. Koivurova H.: The numerical study of the nonlinear dynamic of a light, axially moving string. J. Sound Vib. 320, 373–385 (2009)

    Article  Google Scholar 

  20. Tan C.A., Yang B., Mote C.D. Jr: Dynamical response of an axially moving beam coupled to hydrodynamical bearings. J. Vib. Acoust. 115, 9–15 (1993)

    Article  Google Scholar 

  21. Oz H.R., Pakdemirli M.: Vibrations of an axially moving beam with time dependent velocity. J. Sound Vib. 227(2), 239–257 (1999)

    Article  Google Scholar 

  22. Spelsberg-Korspeter G., Kirillov O.N., Hagedorn P.: Modeling and stability analysis of an axially moving beam with frictional contact. J. Appl. Mech. 75, 031001-1-10 (2008)

    Article  Google Scholar 

  23. Pakdemirli M., Oz H.R.: Infinite mode analysis and truncation to resonant modes of axially accelerated beam vibrations. J. Sound Vib. 311, 1052–1074 (2008)

    Article  Google Scholar 

  24. Ghayesh M.H.: Stability characteristics of an axially accelerating string supported by an elastic foundation. Mech. Mach. Theory 44, 1964–1979 (2009)

    Article  MATH  Google Scholar 

  25. Chakraborty G., Mallik A.K.: Non-Linear vibration of a travelling beam having an intermediate guide. Nonlinear Dyn. 20, 247–265 (1999)

    Article  MATH  Google Scholar 

  26. Zhang L., Zu J.W.: Nonlinear vibration of parametrically excited viscoelastic moving belts, Part I: dynamical response. J. Appl. Mech. 66, 396–402 (1999)

    Article  Google Scholar 

  27. Parker R.G., Lin Y.: Parametric instability of axially moving media subjected to multifrequency tension and speed fluctuations. J. Appl. Mech. 68, 49–57 (2001)

    Article  MATH  Google Scholar 

  28. Suweken G., Van Horssen W.T.: On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity. Nonlinear Dyn. 31, 197–223 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Chen, L.Q., Zhao, W.J.: A numerical method for simulating transverse vibration of an axially moving string. Appl. Math. Comput. 411–422 (2005)

  30. Tang Y.-Q., Chen L.-Q., Yang X.-D.: Natural frequencies, modes and critical speeds of axially moving Timoshenko beams with different boundary conditions. Int. J. Mech. Sci. 50, 1448–1458 (2008)

    Article  Google Scholar 

  31. Nayfeh A.H., Mook D.T.: Nonlinear oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  32. Nayfeh A.H.: Introduction to perturbation techniques. Wiley, New York (1981)

    MATH  Google Scholar 

  33. Kevorkian J., Cole J.D.: Perturbation methods in applied mathematics. Springer-Verlag, New York (1981)

    MATH  Google Scholar 

  34. Thomsen J.J.: Vibrations and stability: advanced theory, analysis, and tools. Springer-Verlag, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghayesh, M.H., Moradian, N. Nonlinear dynamic response of axially moving, stretched viscoelastic strings. Arch Appl Mech 81, 781–799 (2011). https://doi.org/10.1007/s00419-010-0446-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0446-3

Keywords

Navigation