Skip to main content
Log in

An extendable poroelastic plate formulation in dynamics

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A strategy is presented, which allows deriving poroelastic plate formulations of any desired level of approximation. Starting point are the governing three-dimensional (3D) equations of poroelasticity in frequency domain developed by Biot. In order to reduce the dimension of the problem from 3D to 2D, all unknown quantities are approximated by series expansions in thickness direction. This avoids the need for any engineering assumptions. The reduction in the dimension can then be achieved by an integration over the thickness. After truncating the series, a special plate formulation is retrieved. Results are presented for a square, clamped plate which show excellent agreement with the solution of the 3D equations and a considerable saving in computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atalla N., Panneton R., Debergue P.: A mixed displacement-pressure formulation for poroelastic materials. J. Acous. Soc. Am. 104(3), 1444–1452 (1998)

    Article  Google Scholar 

  2. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  3. Biot M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  4. Biot M.A.: Theory of deformation of a porous viscoelastic anisotropic solid. J. Appl. Phys. 27(5), 459–467 (1956)

    Article  MathSciNet  Google Scholar 

  5. Biot M.A.: Theory of propagation of elastic waves in a fluid-saturated porous solid. I/II. Lower/Higher frequency range. J. Acoust. Soc. Am. 28(2), 168–178 (1956)

    Article  MathSciNet  Google Scholar 

  6. Bonnet G., Auriault J.L.: Dynamics of saturated and deformable porous media: homogenization theory and determination of the solid-liquid coupling coefficients, pp. 306–316. Springer, Berlin (1985) Physics of Finely Divided Matter

    Google Scholar 

  7. Braess D.: Finite elemente. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  8. Cederbaum G., Li L., Schulgasser K.: Poroelastic structures. Elsevier Science, Amsterdam (2000)

    Google Scholar 

  9. Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity, comprehensive rock engineering, vol. 2, pp. 113–171. Pergamon Pressm, Oxford (1993)

  10. Hughes T.J.R.: The finite element method—linear static and dynamic finite element analysis. Dover Publications Inc, New York (1987)

    MATH  Google Scholar 

  11. Johnson D., Koplik J., Dashen R.: Theory of dynamic permeability and tortuosity in fluid saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  MATH  Google Scholar 

  12. Kienzler R.: On consistent plate theories. Arch. Appl. Mech. 72, 229–247 (2002)

    Article  MATH  Google Scholar 

  13. Kienzler, R.: On consistent second-order plate theories. In: Theories of plates and shells: critical review and new applications (Lecture Notes in Applied and Computational Mechanics), vol. 16, pp. 85–96. Springer (2004)

  14. Kirk B., Peterson J.W., Stogner R.H., Carey G.F.: libMesh: A C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  15. Leclaire P., Horoshenkov K.V., Cummings A.: Transverse vibrations of a thin rectangular porous plate saturated by a fluid. J. Sound Vib. 247(1), 1–18 (2001)

    Article  Google Scholar 

  16. Lewis R.W., Schrefler B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media. 2nd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  17. Mindlin R.D.: An Introduction to the Mathematical Theory of Vibration of Elastic Plates. World Scientific Publishing Co. Pte. Ltd, London (2006)

    Book  Google Scholar 

  18. Preußer G.: Eine systematische Herleitung verbesserter Plattengleichungen. Arch. Appl. Mech. 54(1), 51–61 (1984)

    MATH  Google Scholar 

  19. Schanz M., Pryl D.: Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua. Int. J. Solids Struct. 41(15), 4047–4073 (2004)

    Article  MATH  Google Scholar 

  20. Taber L.A.: A theory for transverse deflection of poroelastic plates. J. Appl. Mech. 59, 628–634 (1992)

    Article  MATH  Google Scholar 

  21. Theodorakopoulos D.D., Beskos D.E.: Flexural vibrations of poroelastic plates. Acta Mech. 103, 191–203 (1994)

    Article  MATH  Google Scholar 

  22. Wilmanski K.: A few remarks on Biot’s model and linear acoustics of poroelastic saturated material. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schanz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagler, L., Schanz, M. An extendable poroelastic plate formulation in dynamics. Arch Appl Mech 80, 1177–1195 (2010). https://doi.org/10.1007/s00419-010-0429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0429-4

Keywords

Navigation