Skip to main content
Log in

On the displacement potential solution of plane problems of structural mechanics with mixed boundary conditions

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The present paper describes the advancement of displacement potential approach in relation to solution of plane problems of structural mechanics with mixed mode of boundary conditions. Both the conditions of the plane stress and the plane strain are considered for analyzing the displacement and stress fields of the structural problem. Using the finite difference technique based on the present displacement potential approach for the case of the plane stress and the plane strain conditions, firstly an elastic cantilever beam subjected to a pure shear at its tip is solved and these two solutions (plane stress and plane strain) are compared with Timoshenko and Goodier cantilever beam bending solutions (Theory of elasticity, 2nd edn. McGraw-Hill, New York, 1951); secondly the above-mentioned displacement potential approach for the case of the plane stress and the plane strain conditions are applied to solve a one-end fixed square plate subjected to a combined loading at its tip. Effects of plane stress and plane strain on the elastic field of the plate are discussed in a comparative fashion. Limitations of Timoshenko and Goodier cantilever beam bending solutions (Theory of elasticity, 2nd edn. McGraw-Hill, New York, 1951) over the displacement potential approach for the case of the plane stress and the plane strain conditions are not only discussed but also the superiority of the present displacement potential approach for the case of the plane stress and the plane strain conditions are reflected in the present research work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u x (x, y):

Axial displacement component

u y (x, y):

Lateral displacement component

σ xx (x, y):

Axial stress component

σ yy (x, y):

Lateral stress component

σ xy (x, y):

Shear stress component

σ n :

Normal stress

σ t :

Lateral stress

PN:

Plane strain condition

PS:

Plane stress condition

r :

x/b

E :

Young’s modulus

ν :

Poisson’s ratio

l :

Length of the cantilever beam

2c :

Width of the cantilever beam

b :

Length of the plate

2a :

Width of the plate

References

  1. Airy G.B.: On the strains in the interior of beams. Philos. Trans. R. Soc. Lond. Ser. A 153, 49–79 (1863)

    Article  Google Scholar 

  2. Love, A.E.H.: A treatise on the mathematical theory of elasticity, vol.1, Cambridge Univ Press, Cambridge (1892) (Reprinted: Dover, New York (1944))

  3. Filon L.N.G.: On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special references to points of concentrated or discontinuous loading. Philos. Trans. R. Soc. Lond. Ser. A 201, 63–155 (1903)

    Article  Google Scholar 

  4. Michell J.H.: On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. 31, 100–121 (1899)

    Article  Google Scholar 

  5. Michell J.H.: Elementary distributions of plane stress. Proc. Lond. Math. Soc. 32, 35–61 (1901)

    Google Scholar 

  6. Venske O.: Zur Integration der Gleichung ΔΔu = 0 für ebene Bereiche. Nachr. K. Ges. Wiss. Göttingen 1, 27–34 (1891)

    Google Scholar 

  7. Klein, F., Wieghardt, K.: Über Spannungsflächen und reziproke Diagramme, mit bezonderer Berücksichting der MAXWELLschen Arbeiten, Arch. Math. Phys. (ser.3) 8, 1–23, 95–97 (1904)

    Google Scholar 

  8. Timpe, A.: Probleme der spannungsverteilung in ebenen Systemen, einfach, gelöst mit Hilife der AIRYschen Funktion (Dissertation), Teubner, Leipzig (1904)

  9. Wieghardt, K.: Über ein neues Verfahren, verwickelte Spannungsverteilungen in elastischen Körpen auf experimentellem Wege zu finden. (Dissertation), Teubner, Berlin. (Also in Forschung Gebiete Ingenieurwesens B49, 15–30) (1908)

  10. Sommerfield A.: Über die Knicksicherheit der Stege von Walzwerkprofilen. Z. Math. Phys. 54, 113–153 (1906)

    Google Scholar 

  11. Boussinesq, J.: Application des potentiels á l’étude de l’équilibre et du movement des solides élastiques principalement au calcul des effort quelconques exercés sur une petite partie de leur surface ou de leur interieur, Gautiers-Villars, Paris (1885)

  12. Papkovich, P.F.: A derivation the main formulae of the plain problem of the theory of elasticity from the general integral of the Lame equations. Prikl. Mat. Mekh. 147–154 (1937) (in Russian)

  13. Kolosov, G.V.: Application of complex diagrams and theory of functions of complex variable to the theory of elasticity. ONTI, Leningrad-Moscow (1935) (in Russian)

  14. Mathieu E.: Mémoire sur l’équilibre d’élasticité d’un prisme rectangle. J. Ec. Polytech. (Paris) 30, 173–196 (1881)

    Google Scholar 

  15. Winslow A.M.: Differentiation of Fourier series in stress solutions for rectangular plates. Q. J. Mech. Appl. Math. 4, 449–460 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kalmanok, A.S.: Structural mechanics of plates, Mashstroiizdat, Moscow (English review). Appl. Mech. Rev. 5(74), (1950) (in Russian)

  17. Gurtin, M.: The linear theory of elasticity. In: Flügge S. (ed.) Handbuch der Physik. Julius Springer-Verlag, Berlin, Via/2, 1–295 (1972)

    Google Scholar 

  18. Golovin K.H.: One problem in statics of an elastic body (in Russian). Izvestiya St. peterburg Prakt Tekhnol. Inst. 3, 373–410 (1881)

    Google Scholar 

  19. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  20. Kolosov, G., Muskhelishvili, N.: On equilibrium of elastic circular discs under surface loads acting in their plane (in Russian), Izvestiya Petrograd. Elektrotech. Inst. 12, 39–55 (German review in Jbuch. Fortschr: Math, 48, 1434–1435) (1915)

  21. Muschelišvili, N.I.: A study of the new integral equations of the plane theory of elasticity. Dokl. Akad. Nauk. SSSR 3(1), 73–77 (1934) (in Russian, with French summary)

  22. Muskhelishvili, N.I.: Some basic problems of the mathematical theory of elasticity. Izd Akad Nauk SSSR, Moscow-Leningrad (1933) (in Russian). Also: 2nd edition (1938), (in Russian) Izd Akad Nauk SSSR,Moscow-Leningrad(1954). Also: 4th edition (1954), 5th edition (1966)

  23. Nielsen N.J.: Bestemmelse of Spaendinger i Plader ved Anwendelse af Differenslignninger. Jorgensen, Copenhagen (1920)

    Google Scholar 

  24. Marcus H.: Die ermittlung der spannungen in beliebig begrezten Scheiben. S-B. Akad. Wiss. Wien Mat. -Nat. Kl. 138, 401–424 (1929)

    Google Scholar 

  25. Bortsch R.: Die Ermittlung der Spannungen in beliebig begrezten Scheiben. S-B. Akad. Wiss. Wien Mat. -Nat. Kl. 138, 401–424 (1929)

    Google Scholar 

  26. Bay H.: Lernen und Reifen: vom Erlebnis moderner Bautechnik. Beton-Verlag, Düsseldorf (1969)

    Google Scholar 

  27. Varvak P.M.: Development and Application of the Network Method to the Plate Design (in Russian). Izd Akad Nauk UkrSSR, Kiev (1969)

    Google Scholar 

  28. Conway H.D., Chow L., Morgan G.W.: Analysis of deep beams. ASME J. Appl. Mech. 18, 163–172 (1951)

    MATH  MathSciNet  Google Scholar 

  29. Beyer K.: Die Statik im Stahlbetonbau. Julius Springer-Verlag, Berlin (1956)

    Google Scholar 

  30. Richardson L.F.: The approximate arithmetical solution by Finite-differences of physical problems involving differential equations with an application to the stresses in a masonary dam. Philos. Trans. R. Soc. Lond. Ser. A 210, 307–357 (1910)

    Article  Google Scholar 

  31. Grinchenko, V.T., Ulitko, A.F: Equilibrium of elastic bodies of canonical shape [in Russian], Naukova Dumka, Kiev. Three-dimensional problems of the theory elasticity and plasticity, vol.3 [in Russian] (1985)

  32. Vigak V.M.: Solution of two-dimensional problems of elasticity and thermoelasticity for a rectangular region. J. Math. Sci. 86, 2537–2542 (1997)

    Article  MathSciNet  Google Scholar 

  33. Vihak V.M., Yuzvyak M.Yo.: Key continuity equations in stresses for axisymmetric problems of elasticity and thermoelasticity. J. Math. Sci. 107, 3659–3665 (2001)

    Article  Google Scholar 

  34. Vihak V.M.: The solution of the elasticity and thermoelasticity problem in stresses. Int. Transform. Appl. Boundary Probl. 9, 34–122 (1995)

    Google Scholar 

  35. Vihak V., Tokovyi Y., Rychahivskyy A.: Exact solution of the plane problem of elasticity in a rectangular region. J. Comput. Appl. Mech. 3, 193–206 (2002)

    MATH  MathSciNet  Google Scholar 

  36. Vihak V.M.: Construction of a solution of the plane problem of elasticity and thermoelasticity for orthotropic materials. Mat. Metody Fiz.-Mekh. Polya. 40, 24–29 (1997)

    Google Scholar 

  37. Parton V.Z., Perlin P.I.: Methods of Mathematical Theory of Elasticity (in Russian). Nauka, Moscow (1981)

    Google Scholar 

  38. Grinchenko V.T.: Equilibrium and Steady Oscillations of Finite Elastic Bodies [in Russian]. Naukova Dumka, Kiev (1978)

    Google Scholar 

  39. Vihak V.M.: Solution of the two-dimensional problems of elasticity and thermoelasticity for rectangular domains. Mat. Met. Fiz.-Mekh. Polya. 39, 19–25 (1996)

    Google Scholar 

  40. Vihak V.M., Tokovyi Yu.V.: Investigation of the plane stressed state in a rectangular domain. Mater. Sci. 38, 230–237 (2002)

    Article  Google Scholar 

  41. Biezeno C.B., Koch J.J.: Over een nieuwe method ter berekening van vlakke platen, met toepassing op ecnige voor de techniek belangrijke belastingsgevallen. Ingenieur 38, 25–36 (1923)

    Google Scholar 

  42. Southwell R.V.: On relaxation methods: a mathematics for engineering science (Bakerian lecture). Proc. R. Soc. Lond. Ser. A 184, 253–288 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  43. Fox L.: Mixed boundary conditions in the relaxational treatment of biharmonical problems (plane strain or stress). Proc. R. Soc. Lond. Ser. A 239, 419–460 (1947)

    Google Scholar 

  44. Meleshko V.V.: Selected topics in the history of the two-dimensional biharmonic problem. Appl. Mech. Rev. 56, 33–85 (2003)

    Article  Google Scholar 

  45. Odgen R.W., Isherwood D.A.: Solution of some finite plane strain problems for compressible elastic solids. J. Mech. Appl. Math. 31(2), 219–249 (1979)

    Google Scholar 

  46. Chow, L., Conway, H.D., Winter, G.: Stresses in deep beams, Trans. ASCE, pp. 2557 (1952)

  47. Horgan C.O., Knowels J.K.: Recent developments concerning Saint Venant’s Principle. Adv. Appl. Mech. 23, 179–269 (1983)

    Article  MATH  Google Scholar 

  48. Parker D.F.: The role of Saint-Venant’s solutions in rod and beam theories. J. Appl. Mech. 46, 861–866 (1979)

    MATH  Google Scholar 

  49. Suzuki S.: Stress analysis of short beams. J. AIAA 24, 1396–1398 (1986)

    Article  MATH  Google Scholar 

  50. Hardy S.J., Pipelzadeh M.K.: Static analysis of short beams. J. Strain Anal. 26, 15–29 (1991)

    Article  Google Scholar 

  51. Murty A.V.K.: Towards a consistent beam theory. J. AIAA 22, 811–816 (1984)

    Article  Google Scholar 

  52. Uddin, M.W.: Finite-difference solution of two-dimensional elastic problems with mixed boundary conditions, M.Sc. Thesis, Carleton University, Canada (1966)

  53. Chapel R., Smith H.W.: Finite-difference solution for plane stress. J. AIAA 6, 1156–1157 (1968)

    Article  Google Scholar 

  54. Patnaik S.N.: The variational energy formulation for the integrated force method. AIAA J. 24(1), 129–137 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  55. Patnaik S.N., Pai S.S., Hopkins D.A.: Compatibility condition in theory of solid mechanics (Elasticity, Structures, and Design Optimization). Appl. Mech. Rev. 56, 33–85 (2003)

    Article  Google Scholar 

  56. Ahmed S.R., Nath S.K.D., Uddin M.W.: Optimum shapes of tire-treads for avoiding lateral slippage between tires and roads. Int. J. Numer. Methods Eng. 64, 729–750 (2005)

    Article  MATH  Google Scholar 

  57. Ahmed S.R., Nath S.K.D.: A simplified analysis of the tire-tread contact problem using displacement based finite-difference technique. Comput. Model. Eng. Sci. 44, 35–63 (2009)

    Google Scholar 

  58. Timoshenko S., Goodier J.N.: Theory of Elasticity. 2nd edn. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  59. Sadd M.H.: Elasticity: Theory, Applications, Numerics. Elsevier, USA (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Deb Nath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, S.K.D., Ahmed, S.R. & Kim, SG. On the displacement potential solution of plane problems of structural mechanics with mixed boundary conditions. Arch Appl Mech 80, 1125–1147 (2010). https://doi.org/10.1007/s00419-010-0428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0428-5

Keywords

Navigation