Skip to main content
Log in

Minimal models for squealing of railway block brakes

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Block brakes have been used to brake railway vehicles for approximately 200 years. During the last 40 years, disk brakes have replaced the block brakes at passenger cars but block brakes are still used for all freight wagons. One problem of block brakes is that they show an enormous tendency to squeal. Although the block brake is a very common and old technical component, there exists almost no scientific work on its noise behavior regarding squeal. On the other hand, a lot of work has been done on the problem of disk brake squeal especially concerning the modeling of the excitation mechanism. The goal of this paper is to investigate whether and how models from disk brake squeal can be modified to model block brake squeal. The starting point of these investigations is a minimal model for an automotive disk brake introduced by von Wagner et al. (J Sound Vibration, 51(1–2):223–237, 2007) that is adapted to the block brake problem. It can be shown that such a simple converted model does not show any instability at all. A deeper analysis suggests that the reasons for squeal in block brakes could originate from in-plane vibrations of the brake disk or specific geometrical properties of the railway wheel. The self-excited vibrations explaining the squeal occur at relatively low rotational speeds far below the first critical rotor speed which has rarely been observed in rotor dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker-Lindhorst, K.: Dissq disc supressing squeal, Quietschfreie Hochleistungsscheibenbremse. Leiser Verkehr, Lärmforschung im Forschungsprogramm Mobilität und Verkehr, Bundesministerium für Bildung und Forschung (2003)

  2. Beier, M.: Disc supressing squeal (dissq); squealing free high performance disk brake. Euronoise Tampere (2006)

  3. Bühler, S.: Eurosabot field measurement–methods and results. J. Accoust. Soc. Am. 105 (1999)

  4. Ehlers, H.R.: Potenziale und Grenzen der Klotzbremse im Vergleich zur Scheibenbremse. ZEVrail Glasers Annalen, pp 126–617 (2002)

  5. Gasch R., Nordmann R., Pfützner H.: Rotordynamik. Springer, Berlin (2002)

    Google Scholar 

  6. Hagedorn P.: Non-Linear Oscillations. Calendron Press, Oxford (1988)

    MATH  Google Scholar 

  7. Hochlenert D., Spelsberg-Korspeter G., Hagedorn P.: Friction induced vibrations in moving continua and their application to brake squeal. Trans. ASME J. Appl. Mech. 74, 542–549 (2007)

    Article  MATH  Google Scholar 

  8. Hoffmann N., Fischer M., Allgaier R., Gaul L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29, 197–205 (2002)

    Article  MATH  Google Scholar 

  9. Ibrahim R.A.: Friction-induced vibration, chatter, squeal and chaos, part i: mechanics of contact and friction. ASME Appl. Mech. Rev. 47(7), 227–253 (1994)

    Article  Google Scholar 

  10. Karapetjan A.V.: The stability of nonconservative systems. Vestnik Moskovskogo Universiteta Serija 1, mathematika, mechanika 4(30), 109–113 (1975)

    MathSciNet  Google Scholar 

  11. Kinkaid N.M., O’Reilly O.M., Papadopoulos P.: Automotive disc brake squeal. J. Sound Vibration 267, 105–166 (2003)

    Article  Google Scholar 

  12. Krettek O., Abdel U., Zobory I.: Modellierung der Klotzbremse. ZEV+DET Glas 1, 18 (1994)

    Google Scholar 

  13. Lakhadanov V.M.: On stabilization of potential systems. PMM 39(1), 53–58 (1975)

    MathSciNet  Google Scholar 

  14. Lorang X., Foy-Margiocchi F., Nguyen Q., Gautier P.: TGV disc brake squeal. J. Sound Vibration 293, 735–746 (2006)

    Article  Google Scholar 

  15. Mottershead J.: Vibration- and friction-induced instability in disks. Shock Vibration Dig. 30(1), 14–31 (1998)

    Article  Google Scholar 

  16. Ouyang H., Mottershed J.E.: Dynamic instability of an elastic disk under the action of a rotating friction couple. J. Appl. Mech. 71, 753–758 (2004)

    Article  MATH  Google Scholar 

  17. Ouyang H., Nack W., Yuan Y., Chen F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Vehicle Noise Vibration 1(3), 207–231 (2005)

    Article  Google Scholar 

  18. Shin K., Brennan M., Oh J., Harris C.: Analysis of disc brake noise using a two-degree-of-freedom model. J. Sound Vibration 254(5), 837–848 (2002)

    Article  Google Scholar 

  19. Spelsberg-Korspeter G.: Breaking of symmetries for stabilization of rotating continua in frictional contact. J. Sound Vibration 322, 798–807 (2009)

    Article  Google Scholar 

  20. Spelsberg-Korspeter G., Hochlenert D., Kirillov O.N., Hagedorn P.: In- and out-of-plane vibrations of a rotating plate with frictional contact: Investigations on squeal phenomena. Trans. ASME J. Appl. Mech. 76(4), 041, 006/1–041,006/14 (2009)

    Article  Google Scholar 

  21. Tross A.: Geteilter Bremsbelag, insbesondere für Schienenfahrzeuge. Deutsches Patentamt, Auslegeschrift 1170, 444 (1964)

    Google Scholar 

  22. von Wagner U., Schlagner S.: On the origin of disk brake squeal. Int. J. Vehicle Design 51(1–2), 223–237 (2009)

    Article  Google Scholar 

  23. von Wagner U., Hochlenert D., Hagedorn P.: Minimal models for the explanation of disk brake squeal. J. Sound Vibration 302, 527–539 (2007)

    Article  Google Scholar 

  24. Wiemers, M.: Einfluss von Steifigkeit und Dämpfung bei Eisenbahnrädern insbesondere von Güterwagenrädern auf die Schallabstrahlung. PhD thesis, TU Berlin (2005)

  25. Zander, C.P.: Klotzbremsen mit Sintermetallbelägen. ZEV + DET Glas 125 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utz von Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Wagner, U., Spelsberg-Korspeter, G. Minimal models for squealing of railway block brakes. Arch Appl Mech 81, 503–511 (2011). https://doi.org/10.1007/s00419-010-0422-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0422-y

Keywords

Navigation