Skip to main content
Log in

Watching quiet human stance to shake off its straitjacket

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The single-inverted pendulum (SIP) model is still the paradigm describing dynamics and control of quiet human stance in the sagittal plane. We used two methods to verify this paradigm. First, in an experimental approach we acquired kinematic data of both legs of ten subjects at high spatial resolution while quietly standing on two force platforms. We calculated all leg joint angles, the belonging joint torques using inverse dynamics and estimates of joint stiffnesses. Some linear correlations and regressions of both local (joint) and global (COM, COP: centre of mass respectively pressure) variables predicted by the SIP model were investigated. All three verification criteria applied to mean values extracted from experimental data revealed that the SIP is not a valid model for quiet human stance. As a second method, we used computer synthesis to demonstrate that a double-inverted pendulum (DIP) model enters a stable attractor when just the “hip” joint torque is regulated, whereas no torque is applied to the “ankle” joint. Here, angle and torque fluctuations are necessary because such a DIP strategy is of inevitable dynamic character. The two predicted eigenfrequencies of this regulated DIP model approximate the upper and lower limits of the main part of measured power spectra of quiet human stance. We suggest this dynamic necessity to be representative of the biological constraints under which a mechanically unstable inverted multi-segment chain must be stabilised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

(Time) sequence:

An array of values of measured variables (positional or force components) sampled discretely versus time

Trial:

Acquisition of one (consistent and synchronised) data set containing all (time) sequences of the measured variables

N :

Number of trials (60)

f s :

Sampling frequency of the kinematic data (115.5Hz)

f h :

High-pass cutoff-frequency of the kinetic data (\({\frac{1}{8}\,{\rm Hz}}\))

SIP:

(Single)-inverted pendulum

DIP:

Double-inverted pendulum

Segment:

A fraction of whole body mass located between joints (right and left foot, shank, thigh plus HAT)

HAT:

Segment including head, arms, and trunk

COM:

Centre of mass

COP:

Centre of pressure

HAT-COM:

COM of the HAT-segment

GRF:

Ground reaction force

DOF:

Degree of freedom

s.d.:

Standard deviation

min:

Minimum

max:

Maximum

\({\mathcal{M}}\) :

Body mass

g :

Gravitational acceleration

h :

Distance between ankle joint and COM

Θcom :

Moment of inertia for the body rotating around its COM (\({\approx \frac{1}{5}\cdot \mathcal{M}\cdot h^{2}}\))

Θ:

Body moment of inertia for rotation around ankle joint (\({=\mathcal{M}\cdot h^{2} + \Theta_{\rm com}}\))

K :

Rotational “ankle stiffness” of the SIP model (i.e., unit: N m/rad)

K ankle :

Sum of real, measured right and left ankle stiffnesses

K crit :

Critical “ankle stiffness” (\({= \mathcal{M}\cdot g\cdot h}\))

K eff :

Effective stiffness for the SIP model ( = KK crit)

ω :

Angular eigenfrequency of the SIP model \({\left(=\sqrt{\frac{K - K_{\rm crit}}{\Theta}}\, = \,\sqrt{\frac{K_{\rm eff}}{\Theta}}\right)}\)

ν :

Eigenfrequency of the SIP model \({\left(= \frac{\omega}{2 \pi}\right)}\)

\({\tau_{\rm acc}^{2}}\) :

\({= \frac{\Theta}{K_{\rm crit}}\, = \,\left(\frac{K}{K_{\rm crit}} - 1\right) \cdot \frac{1}{\omega^{2}}\, = \,\frac{K_{\rm eff}}{K_{\rm crit}}\cdot \frac{1}{\omega^{2}}}\)

References

  1. Allum J.H.J., Mauritz K.H.: Compensation for intrinsic muscle stiffness by short latency reflexes in human triceps surae muscles. J. Neurophysiol. 52(5), 797–818 (1984)

    Google Scholar 

  2. Baratto L., Morasso P.G., Re C., Spada G.: A new look at posturographic analysis in the clinical context: sway-density versus other parameterization techniques. Motor Control 6(3), 246–270 (2002)

    Google Scholar 

  3. Barnea D.I., Silverman H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Comput. C-21, 179–186 (1972)

    Article  Google Scholar 

  4. Bottaro A., Casadio M., Morasso P.G., Sanguineti V.: Body sway during quiet standing: Is it the residual chattering of an intermittent stabilization process?. Hum. Mov. Sci. 24(4), 588–615 (2005)

    Article  Google Scholar 

  5. Bottaro A., Yasutake Y., Nomura T., Casadio M., Morasso P.: Bounded stability of the quiet standing posture: an intermittent control model. Hum. Mov. Sci. 27(3), 473–495 (2008)

    Article  Google Scholar 

  6. Bronstein I.N., Semendjajew K.A.: Taschenbuch der Mathematik, 21st edn. Teubner, Leipzig (1979)

    Google Scholar 

  7. Casadio M., Morasso P.G., Sanguineti V.: Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application. Gait Posture 21(4), 410–424 (2005)

    Article  Google Scholar 

  8. Chow C.C., Collins J.J.: Pinned polymer model of posture control. Phys. Rev. E 52(1), 907–912 (1995)

    Article  Google Scholar 

  9. Collins J.J., De Luca C.J.: Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95(2), 308–318 (1993)

    Article  Google Scholar 

  10. Collins J.J., De Luca C.J.: Random walking during quiet standing. Phys. Rev. Lett. 73(5), 764–767 (1994)

    Article  Google Scholar 

  11. Creath R., Kiemel T., Horak F., Peterka R., Jeka J.: A unified view of quiet and perturbed stance: simultaneous c-existing excitable modes. Neurosci. Lett. 377(2), 75–80 (2005)

    Article  Google Scholar 

  12. Day B.L., Steiger M.J., Thompson P.D., Marsden C.D.: Effect of vision and stance width on human body motion when standing: implications for afferent control of lateral sway. J. Physiol. 469, 479–499 (1993)

    Google Scholar 

  13. Dijkstra T.M.H.: A gentle introduction to the dynamic set-point model of human postural control during perturbed stance. Hum. Mov. Sci. 19(4), 567–595 (2000)

    Article  MathSciNet  Google Scholar 

  14. Edwards W.T.: Effect of joint stiffness on standing stability. Gait Posture 25(3), 432–439 (2007)

    Article  Google Scholar 

  15. Eurich C.W., Milton J.G.: Noise-induced transitions in human postural sway. Phys. Rev. E 54(6), 6681–6684 (1996)

    Article  Google Scholar 

  16. Fitzpatrick R.C., Taylor J.L., McCloskey D.I.: Ankle stiffness of standing humans in response to imperceptible perturbation: reflex and task-dependent components. J. Physiol. 454, 533–547 (1992)

    Google Scholar 

  17. Frischholz, R.W., Spinnler, K.P.: Class of algorithms for realtime subpixel registration. In: Braggins, D.W. (ed.) Computer Vision for Industry: International Symposium on Electronic Imaging Device Engineering, vol. 1989 of Europto Series, pp. 50–59, München, Germany, 24–25 June 1993. SPIE, Bellingham, WA. ISBN: 0-8194-1238-4. http://www.scientificcommons.org/20297136, http://www.winanalyze.com/publications.htm

  18. Fujisawa N., Masuda T., Inaoka Y., Fukuoka H., Ishida A., Minamitani H.: Human standing posture control system depending on adopted strategies. Med. Biol. Eng. Comput. 43(1), 107–114 (2005)

    Article  Google Scholar 

  19. Gage W.H., Winter D.A., Frank J.S., Adkin A.L.: Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 19(2), 124–132 (2004)

    Article  Google Scholar 

  20. Gatev P., Thomas S., Kepple T., Hallett M.: Feedforward ankle strategy of balance during quiet stance in adults. J. Physiol. 514(Pt 3), 915–928 (1999)

    Article  Google Scholar 

  21. Geursen J.B., Altena D., Massen C.H., Verduin M.A.: A model of standing man for the description of his dynamic behaviour. Agressologie 17, 63–69 (1976)

    Google Scholar 

  22. Günther M., Blickhan R.: Joint stiffness of the ankle and the knee in running. J. Biomech. 35(11), 1459–1474 (2002)

    Article  Google Scholar 

  23. Günther, M., Grimmer, S., Siebert, T., Blickhan, R.: All leg joints contribute to quiet human stance: a mechanical analysis. J. Biomech. (2009, in press). doi:10.1016/j.jbiomech.2009.08.014

  24. Günther M., Sholukha V.A., Keßler D., Wank V., Blickhan R.: Dealing with skin motion and wobbling masses in inverse dynamics. J. Mech. Med. Biol. 3(3/4), 309–335 (2003)

    Article  Google Scholar 

  25. Günther M., Witte H., Blickhan R.: Joint energy balances: the commitment to the synchronization of measuring systems. J. Mech. Med. Biol. 5(1), 139–149 (2005)

    Article  Google Scholar 

  26. Gurfinkel V.S., Osevets M.: Dynamics of the vertical posture in man. Biophysics 17, 496–506 (1972)

    Google Scholar 

  27. Hahn, U.: Entwicklung mehrgliedriger Modelle zur realistischen Simulation dynamischer Prozesse in biologischen Systemen. Master’s thesis, Eberhard-Karls-Universität, Tübingen (1993)

  28. Horak F.B., Nashner L.M.: Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiol. 55(6), 1369–1381 (1986)

    Google Scholar 

  29. Hsu W.L., Scholz J.P., Schöner G., Jeka J.J., Kiemel T.: Control and estimation of posture during quiet stance depends on multijoint coordination. J. Neurophysiol. 97(4), 3024–3035 (2007)

    Article  Google Scholar 

  30. Jacono M., Casadio M., Morasso P.G., Sanguineti V.: The sway-density curve and the underlying postural stabilization process. Motor Control 8(3), 292–311 (2004)

    Google Scholar 

  31. Johansson R., Magnusson M., Fransson P.A., Karlberg M.: Multi-stimulus multi-response posturography. Math. Biosci. 174(1), 41–59 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kiemel T., Oie K.S., Jeka J.J.: Slow dynamics of postural sway are in the feedback loop. J. Neurophysiol. 95(3), 1410–1418 (2006)

    Article  Google Scholar 

  33. Krishnamoorthy V., Goodman S., Zatsiorsky V., Latash M.L.: Muscle synergies during shifts of the center of pressure by standing persons: identification of muscle modes. Biol. Cybern. 89(2), 152–161 (2003)

    Article  MATH  Google Scholar 

  34. Kuczyński M.: The second order autoregressive model in the evaluation of postural stability. Gait Posture 9(1), 50–56 (1999)

    Article  Google Scholar 

  35. Kuo A.D.: An optimal control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 42(1), 87–101 (1995)

    Article  Google Scholar 

  36. Kuo A.D., Speers R.A., Peterka R.J., Horak F.B.: Effect of altered sensory conditions on multivariate descriptors of human postural sway. Exp. Brain Res. 122(2), 185–195 (1998)

    Article  Google Scholar 

  37. Kuo, A.D., Zajac, F.E.: Human standing posture: multi-joint movement strategies based on biomechanical constraints. In: Allum, J.H.J., Allum-Mecklenburg, D.J., Harris, F.P., Probst, R. (eds.) Natural and Artificial Control of Hearing and Balance, Progress in Brain Research, vol. 97, chap. 31, pp. 349–558. North-Holland Elsevier Science Publishers B.V., Amsterdam (1993)

  38. Loram I.D., Kelly S.M., Lakie M.: Human balancing of an inverted pendulum: is sway size controlled by ankle impedance?. J. Physiol. 532(Pt 3), 879–891 (2001)

    Article  Google Scholar 

  39. Loram I.D., Lakie M.: Direct measurement of human ankle stiffness during quiet standing: the intrinsic mechanical stiffness is insufficient for stability. J. Physiol. 545(Pt 3), 1041–1053 (2002)

    Article  Google Scholar 

  40. Loram I.D., Lakie M.: Human balancing of an inverted pendulum: position control by small, ballistic-like, throw and catch movements. J. Physiol. 540(Pt 3), 1111–1124 (2002)

    Article  Google Scholar 

  41. Loram I.D., Maganaris C.N., Lakie M.: Active, non-spring-like muscle movements in human postural sway: how might paradoxical changes in muscle length be produced?. J. Physiol. 564(Pt 1), 281–293 (2005)

    Article  Google Scholar 

  42. Loram I.D., Maganaris C.N., Lakie M.: Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J. Physiol. 564(Pt 1), 295–311 (2005)

    Article  Google Scholar 

  43. Loram I.D., Maganaris C.N., Lakie M.: The passive, human calf muscles in relation to standing: the non-linear decrease from short range to long range stiffness. J. Physiol. 584(Pt 2), 661–675 (2007)

    Article  Google Scholar 

  44. Madigan M.L., Davidson B.S., Nussbaum M.A.: Postural sway and joint kinematics during quiet standing are affected by lumbar extensor fatigue. Hum. Mov. Sci. 25(6), 788–799 (2006)

    Article  Google Scholar 

  45. Masani K., Popović M.R., Nakazawa K., Kouzaki M., Nozaki D.: Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J. Neurophysiol. 90(6), 3774–3782 (2003)

    Article  Google Scholar 

  46. Masani K., Vette A.H., Kawashima N., Popovic M.R.: Neuromusculoskeletal torque-generation process has a large destabilizing effect on the control mechanism of quiet standing. J. Neurophysiol. 100(3), 1465–1475 (2008)

    Article  Google Scholar 

  47. Masani K., Vette A.H., Popovic M.R.: Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23(2), 164–172 (2006)

    Article  Google Scholar 

  48. Matjačić Z., Bajd T.: Arm-free paraplegic standing—part I: control model synthesis and simulation. IEEE Trans. Rehabil. Eng. 6(2), 125–138 (1998)

    Article  Google Scholar 

  49. Matjačić Z., Bajd T.: Arm-free paraplegic standing—part II: experimental results. IEEE Trans. Rehabil. Eng. 6(2), 139–150 (1998)

    Article  Google Scholar 

  50. McCollum G., Leen K.: Form and exploration of mechanical stability limits in erect stance. J. Motor Behav. 21(3), 225–244 (1989)

    Google Scholar 

  51. Mergner, T., Maurer, C., Peterka, R.J.: A multisensory posture control model of human upright stance. In: Prablanc, C., Pélisson, D., Rossetti, Y. (eds.) Neural Control of Space Coding and Action Production, Progress in Brain Research, vol. 142, chap. 12, pp. 189–201. North-Holland Elsevier Science Publishers B.V., Boston (2003)

  52. Merrington, M., Blundell, B., Burrough, J., Golden, J., Hogarth, J. (eds.): A list of the papers and correspondence of Karl Pearson (1857–1936). Publication Office, University College, London (1983). compilation

  53. Mirbagheri M.M., Barbeau H., Kearney R.E.: Intrinsic and reflex contributions to human ankle stiffness: variation with activation level and position. Exp. Brain Res. 135(4), 423–436 (2000)

    Article  Google Scholar 

  54. Morasso P.G., Sanguineti V.: Ankle muscle stiffness alone cannot stabilize balance during quiet standing. J. Neurophysiol. 88(4), 2157–2162 (2002)

    Google Scholar 

  55. Morasso P.G., Schieppati M.: Can muscle stiffness alone stabilize upright standing?. J. Neurophysiol. 82(3), 1622–1626 (1999)

    Google Scholar 

  56. Murray M.P., Seireg A., Scholz R.C.: Centre of gravity, centre of pressure and supportive forces during human activities. J. Appl. Physiol. 23(2), 831–838 (1967)

    Google Scholar 

  57. NASA Reference Publication. Anthropometric Source Book. Technical Report 1024, I-III, NASA Scientific and Technical Information Office, Springfield (1978)

  58. Nashner L.M., McCollum G.: The organization of human postural movements: a formal basis and experimental synthesis. Behav. Brain Sci. 8, 135–172 (1985)

    Article  Google Scholar 

  59. Otten E.: Balancing on a narrow bridge: biomechanics and control. Philos. Trans. R. Soc. Lond. B 354, 869–875 (1999)

    Article  Google Scholar 

  60. Peterka R.J.: Postural control model interpretation of stabilogram diffusion analysis. Biol. Cybern. 82(4), 335–343 (2000)

    Article  Google Scholar 

  61. Peterka R.J.: Sensorimotor integration in human postural control. J. Neurophysiol. 88(3), 1097–1118 (2002)

    Google Scholar 

  62. Qu X., Nussbaum M.A., Madigan M.L.: A balance control model of quiet upright stance based on an optimal control strategy. J. Biomech. 40(16), 3590–3597 (2007)

    Article  Google Scholar 

  63. Rozendaal, L.A., Knoek van Soest, A.J.: Joint stiffness requirements in a multi-segment stance model. In: Proceedings of the XXth Congress of the ISB, p. 622, Cleveland, Ohio (2005)

  64. Rozendaal, L.A., Knoek van Soest, A.J.: Multi-segment stance can be stable with zero local ankle stiffness. In: Proceedings of the XXIst Congress of the ISB, p. 364, Taipei, Taiwan (2007)

  65. Rozendaal L.A., Knoekvan Soest A.J.: Stabilization of a multi-segment model of bipedal standing by local joint control overestimates the required ankle stiffness. Gait Posture 28(3), 525–527 (2008) Letter to the Editor

    Article  Google Scholar 

  66. Runge C.F., Shupert C.L., Horak F.B., Zajac F.E.: Ankle and hip postural strategies defined by joint torques. Gait Posture 10(2), 161–170 (1999)

    Article  Google Scholar 

  67. Sasagawa S., Ushiyama J., Masani K., Kouzaki M., Kanehisa H.: Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces. Exp. Brain Res. 196(4), 537–544 (2009)

    Article  Google Scholar 

  68. Schweigart G., Mergner T.: Human stance control beyond steady state response and inverted pendulum simplification. Exp. Brain Res. 185(4), 635–653 (2008)

    Article  Google Scholar 

  69. Sinkjær T., Toft E., Andreassen S., Hornemann B.C.: Muscle stiffness in human ankle dorsiflexors: intrinsic and reflex components. J. Neurophysiol. 60(3), 1110–1121 (1988)

    Google Scholar 

  70. Stevens D.L., Tomlinson G.E.: Measurement of postural sway. Proc. R. Soc. Med. 64, 653–655 (1971)

    Google Scholar 

  71. Knoek van Soest A.J., Haenen W.P., Rozendaal L.A.: Stability of bipedal stance: the contribution of cocontraction and spindle feedback. Biol. Cybern. 88(4), 293–301 (2003)

    Article  Google Scholar 

  72. Knoek van Soest A.J., Rozendaal L.A.: The inverted pendulum model of bipedal standing cannot be stabilized through direct feedback of force and contractile element length and velocity at realistic series elastic element stiffness. Biol. Cybern. 99(1), 29–41 (2008)

    Article  MATH  Google Scholar 

  73. Wilson E.L., Madigan M.L., Davidson B.S., Nussbaum M.A.: Postural strategy changes with fatigue of the lumbar extensor muscles. Gait Posture 23(3), 348–354 (2006)

    Article  Google Scholar 

  74. Winter D.A.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  75. Winter, D.A.: A.B.C. (Anatomy, Biomechanics and Control) of Balance During Standing and Walking. University of Waterloo, Ontario (1995)

  76. Winter D.A., Patla A.E., Ishac M., Gage W.H.: Motor mechanisms of balance during quiet standing. J. Electromyogr. Kinesiol. 13(1), 49–56 (2003)

    Article  Google Scholar 

  77. Winter D.A., Patla A.E., Prince F., Ishac M., Gielo-Perczak K.: Stiffness control of balance in quiet standing. J. Neurophysiol. 80(3), 1211–1221 (1998)

    Google Scholar 

  78. Winter D.A., Patla A.E., Rietdyk S., Ishac M.: Ankle muscle stiffness in the control of balance during quiet standing. J. Neurophysiol. 85(6), 2630–2633 (2001)

    Google Scholar 

  79. Yang J.F., Winter D.A., Wells R.P.: Postural dynamics in the standing human. Biol. Cybern. 62(4), 309–320 (1990)

    Article  Google Scholar 

  80. Zatsiorsky V.M., Duarte M.: Instant equilibrium point and its migration in standing tasks: rambling and trembling components of the stabilogram. Motor Control 3(1), 28–38 (1999)

    Google Scholar 

  81. Zatsiorsky V.M., Duarte M.: Rambling and trembling in quiet standing. Motor Control 4(2), 185–200 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Günther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günther, M., Müller, O. & Blickhan, R. Watching quiet human stance to shake off its straitjacket. Arch Appl Mech 81, 283–302 (2011). https://doi.org/10.1007/s00419-010-0414-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0414-y

Keywords

Navigation