Skip to main content
Log in

Vibration analysis of bi-layered FGM cylindrical shells

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In the present study, a vibration frequency analysis of a bi-layered cylindrical shell composed of two independent functionally graded layers is presented. The thickness of the shell layers is assumed to be equal and constant. Material properties of the constituents of bi-layered functionally graded cylindrical shell are assumed to vary smoothly and continuously through the thickness of the layers of the shell and are controlled by volume fraction power law distribution. The expressions for strain–displacement and curvature–displacement relationships are utilized from Love’s first approximation linear thin shell theory. The versatile Rayleigh–Ritz approach is employed to formulate the frequency equations in the form of eigenvalue problem. Influence of material distribution in the two functionally graded layers of the cylindrical shells is investigated on shell natural frequencies for various shell parameters with simply supported end conditions. To check the validity, accuracy and efficiency of the present methodology, results obtained are compared with those available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold R.N., Warburton G.B.: Flexural vibrations of the walls of thin cylindrical shell having freely supported ends. Proc. R. Soc. Lond. A 197, 238–256 (1949)

    Article  MATH  Google Scholar 

  2. Arnold R.N., Warburton G.B.: The flexural vibrations of thin cylinders. Proc. Inst. Mech. Eng. A 167, 62–80 (1953)

    Article  Google Scholar 

  3. Leissa, A.W.: Vibration of shells. NASA SP-288, 1973; Reprinted by Acoustical Society of America, America Institute of Physics, 1993

  4. Blevins R.D.: Formulas for Natural Frequency and Mode Shape. Van Nostrand Reinhold, New York (1979)

    Google Scholar 

  5. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells, 2nd edn. CRC Press, New York (2004)

    Google Scholar 

  6. Soedel W.: Vibration of Shells and Plates, 3rd edn. Marcel Dekker Inc, New York (2004)

    Google Scholar 

  7. Markuŝ S.: The Mechanics of Vibrations of Cylindrical Shells. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  8. Warburton G.B.: Vibration of Thin cylindrical shell. J. Mech. Eng. Sci. 7, 399–407 (1965)

    Article  Google Scholar 

  9. Chung H.: Free vibration analysis of cylindrical shells. J. Sound Vib. 74(3), 331–350 (1981)

    Article  MATH  Google Scholar 

  10. Loy C.T., Lam K.M., Shu C.: Analysis of cylindrical shells using generalized differential quadrature. J. Shock Vib. 4(3), 193–198 (1997)

    Google Scholar 

  11. Naeem M.N., Sharma C.B.: Prediction of natural frequencies for thin circular cylindrical shells. Proc. Inst. Mech. Eng. 214(C), 1313–1327 (2000)

    Google Scholar 

  12. Zhang X.M., Liu G.R., Lam K.Y.: Vibration analysis of thin cylindrical shells using wave propagation approach. J. Sound Vib. 239(3), 397–403 (2001)

    Article  Google Scholar 

  13. Xuebin L.: Study on free vibration analysis of circular cylindrical shells using wave propagation. J. Sound Vib. 311, 667–682 (2008)

    Article  Google Scholar 

  14. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: In: Proceedings of the First International Symposium of Functionally Gradient Materials, Japan (1990)

  15. Yamaoka H., Yuki M., Tahara K., Irisawa T., Watanabe R., Kawasaki A.: A fabrication of functionally graded material by slurry and sintering process. Ceram. Trans. Functionally Graded Mater. 34, 165–172 (1993)

    Google Scholar 

  16. Ghosh, A., Miyamoto, Y., Reimanis, I., Lannutti, J.J.: Functionally Graded Materials: Manufacture, Properties and Applications. American Ceramic Society, Ceramic Place, Westerville, Ohio (1997)

  17. Suresh, S., Mortensen, A.: Fundamentals of functionally graded materials: processing and thermo-mechanical behaviour of graded metals and metal-ceramic composites, London; IOM Communications (1998)

  18. Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A., Ford R.G.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic Publishers, London (1999)

    Google Scholar 

  19. Alok K., Priyadarshi S., Gupta K.: Manufacturing multi-material articulated plastic products using in-mold assembly. Int. J. Adv. Manuf. Technol. 32, 350–365 (2007)

    Article  Google Scholar 

  20. Arshad S.H., Naeem M.N., Sultana N.: Frequency analysis of functionally graded material cylindrical shells with various volume fraction laws. J. Mech. Eng. Sci. 221(Part-C), 1483–1495 (2007)

    Google Scholar 

  21. Shah A.G., Mahmood T., Naeem M.N.: Vibrations of FGM thin cylindrical shells with exponential volume fraction law. Appl. Math. Mech. (Engl. Ed.) 30(5), 607–615 (2009)

    Article  MATH  Google Scholar 

  22. Loy C.T., Lam K.Y., Reddy J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41, 309–324 (1999)

    Article  MATH  Google Scholar 

  23. Pradhan S.C., Loy C.T., Lam K.Y., Reddy J.N.: Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61, 111–129 (2000)

    Article  Google Scholar 

  24. Naeem, M.N.: Vibrational frequency analysis of non-rotating and rotating FGM circular cylindrical shell. Ph.D. thesis submitted to the UMIST, Manchester (2002)

  25. Najafizadeh M.M., Isvandzibaei M.R.: Vibration of functionally graded cylindrical shells based on higher order shear deformation plate theory with ring support. Acta Mech. 191, 75–91 (2007)

    Article  MATH  Google Scholar 

  26. Iqbal Z., Naeem M.N., Sultana N.: Vibration characteristics of FGM cylindrical shells by using wave propagation approach. Acta Mech. 208, 237–248 (2009)

    Article  MATH  Google Scholar 

  27. Noor A.K., Burton W.S.: Assessment of computational models for multi-layered composite shells. Appl. Mech. Rev. 43, 67–97 (1990)

    Google Scholar 

  28. Lam K.Y., Loy C.T.: Effect of boundary conditions on frequencies of a multilayered cylindrical shell. J. Sound Vib. 188(3), 363–384 (1995)

    Article  Google Scholar 

  29. Lam K.Y., Loy C.T.: Free vibration of a rotating multi-layered cylindrical shell. Int. J. Solids Struct. 32(5), 647–663 (1995)

    Article  MATH  Google Scholar 

  30. Hua L.: Influence of boundary conditions on the free vibrations of rotating truncated circular multi-layered conical shells. Composites 31(B), 265–275 (2000)

    Google Scholar 

  31. Agbossou A., Barthod C., Teisseyre Y., Gautier G.: Interfacial stresses in vibration of multilayer composite materials: experimental and theoretical analysis. Smart Mater. Struct. 14, 1533–1540 (2005)

    Article  Google Scholar 

  32. Singh S.P., Gupta K.: Damped free vibration of layered composite cylindrical shells. J. Sound Vib. 172(2), 191–209 (1994)

    Article  MATH  Google Scholar 

  33. Sofiyev A.H., Deniz A., Akeay I.H., Yusufoglu E.: The vibration and stability of a three-layered conical shell containing FGM layer subject to axial compression load. Acta Mech. 183, 129–144 (2006)

    Article  MATH  Google Scholar 

  34. Liewa K.M., Yangb J., Wub Y.F.: Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient. Comput. Methods Appl. Mech. Eng. 195(9–12), 1007–1026 (2006)

    Article  Google Scholar 

  35. Shi-Rong L., Batra R.C.: Buckling of axially compressed thin cylindrical shells with functionally graded middle layer. Thin-Walled Struct. 44, 1039–1047 (2006)

    Article  Google Scholar 

  36. Chen W.Q., Bian Z.G., Ding H.J.: Three-dimensional vibration analysis of fluid-filled orthotropic cylindrical shell. Int. J. Mech. Sci. 46, 159–171 (2004)

    Article  MATH  Google Scholar 

  37. Love A.E.H.: On the small free vibrations and deformations of a thin elastic shell. Phil. Trans. R. Soc. Lond. Ser. A 179, 491–549 (1888)

    Article  Google Scholar 

  38. Touloukian Y.S.: Thermophysical Properties of High Temperature Solid Materials. Macmillan, New York (1967)

    Google Scholar 

  39. Bhimaraddi A.: A higher order theory for free vibration analysis of circular cylindrical shells. Int. J. Solids Struct. 20(7), 623–630 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Hussain Arshad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arshad, S.H., Naeem, M.N., Sultana, N. et al. Vibration analysis of bi-layered FGM cylindrical shells. Arch Appl Mech 81, 319–343 (2011). https://doi.org/10.1007/s00419-010-0409-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0409-8

Keywords

Navigation