Skip to main content

A standing wave acoustic levitation system for large planar objects


An acoustic levitation system is presented which can levitate planar objects that are much larger than the wavelength of the applied acoustic wave. It uses standing wave field formed by the sound radiator and the levitated planar object. An experimental setup is developed, by which a compact disc is successfully levitated at frequency of 19 kHz and input power of 40 W. The sound field is modeled according to acoustic theory. The mean excess pressure experienced by the levitated object is calculated and compared with experiment results. The influences of the nonlinear effects within the acoustic near-field are discussed. Nonlinear absorption coefficient is introduced into the linear model to give a more precise description of the system. The levitation force is calculated for different levitation distances and driving frequencies. The calculation results show acceptable agreement with the measurement results.

This is a preview of subscription content, access via your institution.


  1. 1

    Abramov O.: High-intensity Ultrasonics: Theory and Industrial Applications. Gordon and Breach Science Publishers, New York (1998)

    Google Scholar 

  2. 2

    Amabili M., Pasqualini A.: Natural frequencies and modes of free-dege circular plates vibrating in vacuum or in contact with liquid. J. Sound Vib. 188(5), 685–699 (1995)

    Article  Google Scholar 

  3. 3

    Barmatz M., Collas P.: Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. Acoust. Soc. Am. J. 77, 928–945 (1985)

    MATH  Article  Google Scholar 

  4. 4

    Bass H.E., Sutherland L.C., Zuckerwar A.J.: Atmospheric absorption of sound: update. J. Acoust. Soc. Am. 88(4), 2019–2021 (1990)

    Article  Google Scholar 

  5. 5

    Bass H.E., Sutherland L.C., Zuckerwar A.J., Blackstock D.T., Hester D.M.: Atmospheric absorption of sound: further developments. Acoust. Soc. Am. J. 97(1), 680–683 (1995)

    Article  Google Scholar 

  6. 6

    Blevins R.D.: Formulas for Natural Frequency and Mode Shape. Krieger Publishing, Malabar (2001)

    Google Scholar 

  7. 7

    Bücks K., Müller H.: Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld. Z. Phys. 84, 75–86 (1933)

    Article  Google Scholar 

  8. 8

    Chu B.T., Apfel R.E.: Acoustic radiation pressure produced by a beam sound. Acoust. Soc. Am. J. 72, 1673–1687 (1982)

    Article  Google Scholar 

  9. 9

    Chu, B.T., Apfel, R.E.: Response to the comments of Nyborg and Rooney. Acoust. Soc. Am. J. 75, 1003–1004 (1984); J. Acoust. Soc. Am. 75, 263–264 (1984)

  10. 10

    Daidzic, N.: Nonlinear droplet oscillations and evaporation in an ultrasonic levitator. PhD thesis, Lehrstuhl fuer Stroemungsmechanik, Friedrich-Alexander-Universitaet Erlangen (1995)

  11. 11

    Embleton T.F.W.: Mean force on a sphere in a spherical sound field. I. (Theoretical). Acoust. Soc. Am. J. 26, 40 (1954)

    Article  MathSciNet  Google Scholar 

  12. 12

    Gabay R., Bucher I.: Resonance tracking in a squeeze-film levitation device. Mech. Syst. Signal Process. 20, 1696–1724 (2006)

    Article  Google Scholar 

  13. 13

    Gor’kov L.P.: On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Doklady. 6, 773 (1962)

    Google Scholar 

  14. 14

    Hasegawa T.: Acoustic-radiation force on a solid elastic sphere. Acoust. Soc. Am. J. 46, 1139 (1969)

    MATH  Article  Google Scholar 

  15. 15

    Hashimoto Y., Koike Y., Ueha S.: Near-field acoustic levitation of planar specimens using flexural vibration. Acoust. Soc. Am. J. 100, 2057–2061 (1996)

    Article  Google Scholar 

  16. 16

    Höppner, J.: Verfahren zur ber hrungslosen handhabung mittels leistungsstarker schallwandler (in German). PhD thesis, Technische Universität München (2002)

  17. 17

    Hu J., Nakamura K., Ueha S.: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor. Ultrasonics 35, 459–467 (1997)

    Article  Google Scholar 

  18. 18

    Ide T., Friend J.R., Nakamura K., Ueha S.: A low-profile design for the noncontact ultrasonically levitated stage. Jpn. J. Appl. Phys. 44, 4662 (2005)

    Article  Google Scholar 

  19. 19

    King L.: On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. Ser. A 147, 212–240 (1934)

    Article  Google Scholar 

  20. 20

    Lee C.P., Wang T.G.: Acoustic radiation pressure. Acoust. Soc. Am. J. 94, 1099–1109 (1993)

    Article  Google Scholar 

  21. 21

    Leissa W.: Vibration of Plates (NASA SP-160). U.S. Government Printing Office, Washington DC (1969)

    Google Scholar 

  22. 22

    Lierke E.: Acoustic levitation a comprehensive survey of principles and applications. Acta Acustica United Acustica. 82, 220–237 (1996)

    Google Scholar 

  23. 23

    Lierke, L., Grossbach, R., Clancy, P.: Acoustic positioning for space processing of materials science samples in mirror furnaces. In: 1983 IEEE Ultrasonic Symposium Proceedings, p. 1129 (1983)

  24. 24

    Littmann, W.: Piezoelektrische, resonant betriebene Ultraschall-Leistungswandler mit nichtlinearen mechanischen Randbedingungen (in German). PhD thesis, University of Paderborn, Heinz Nixdorf Institute (2003)

  25. 25

    Littmann, W., Hemsel, T., Kauczor, C., Wallaschek, J., Sinha, M.: Load-adaptive phase-controller for resonant driven piezoelectric devices. In: World Congress Ultrasonics, Paris (2003)

  26. 26

    Ma D.Y., Shen H.: Handbook of Acoustics. Science Press, Beijing (2006)

    Google Scholar 

  27. 27

    Minikes A., Bucher I.: Coupled dynamics of a squeeze-film levitated mass and a vibrating piezoelectric disc: numerical analysis and experimental study. J. Sound Vib. 263, 241–268 (2003)

    Article  Google Scholar 

  28. 28

    Minikes A., Bucher I., Haber S.: Levitation force induced by pressure radiation in gas squeeze films. Acoust. Soc. Am. J. 116, 217–226 (2004)

    Article  Google Scholar 

  29. 29

    Nomura H., Kamakura T., Matsuda K.: Theoretical and experimental examination of near-field acoustic levitation. Acoust. Soc. Am. J. 111, 1578–1583 (2002)

    Article  Google Scholar 

  30. 30

    Otsuka, T., Higuchi, K., Seya, K.: Ultrasonic levitation by stepped circular vibrating plate. In: The 10th Symposium on Ultrasonic Electronics, p. 170 (1989)

  31. 31

    Poynting J.H., Thomson J.J.: A Textbook of Physics. Charles Griffin, London (1904)

    Google Scholar 

  32. 32

    Rayleigh L.: On the pressure of vibrations. Philos. Mag. 3, 338 (1902)

    Google Scholar 

  33. 33

    Reinhart, R., Höppner, J., Zimmermann, J.: Non-contact wafer handling using high-intensity ultrasonics. In: IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139–140 (2001)

  34. 34

    Rossing T.D.: Springer Handbook of Acoustics. Springer, New York (2007)

    Book  Google Scholar 

  35. 35

    Salbu E.: Compressible squeeze films and squeeze bearings. J. Basic Eng. 86, 355–366 (1964)

    Google Scholar 

  36. 36

    Sherman C.H., Butler J.L.: Transducers and Arrays for Underwater Sound. Springer, New York (2007)

    Google Scholar 

  37. 37

    Stolarski, T.: Self-lifting contacts: from physical fundamentals to practical applications. In: Proceedings of the I MECH E Part C. J. Mech. Eng. Sci. 220(8), 1211–1218 (2006)

  38. 38

    Trinh E.H.: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instr. 56, 2059–2065 (1985)

    Article  Google Scholar 

  39. 39

    Ueha S., Hashimoto Y., Koike Y.: Non-contact transportation using near-field acoustic levitation. Ultrasonics 38, 26–32 (2000)

    Article  Google Scholar 

  40. 40

    Wang, T., Saffren, M.: Acoustic chamber for weightless positioning. AIAA paper 155 (1974)

  41. 41

    Westervelt P.J.: The mean pressure and velocity in a plane acoustic wave in a gas. Acoust. Soc. Am. J. 22, 319–327 (1950)

    Article  MathSciNet  Google Scholar 

  42. 42

    Westervelt P.J.: The theory of steady forces caused by sound waves. Acoust. Soc. Am. J. 23, 312–315 (1951)

    Article  MathSciNet  Google Scholar 

  43. 43

    Westervelt P.J.: Acoustic radiation pressure. Acoust. Soc. Am. J. 29, 26–29 (1957)

    Article  Google Scholar 

  44. 44

    Whymark R.: Acoustic field positioning for containerless processing. Ultrasonics 13, 251–261 (1975)

    Article  Google Scholar 

  45. 45

    Wiesendanger, M.: Squeeze film air bearings using piezoelectric bending elements. PhD thesis, Ecole polytechnique federale de Lausanne (2001)

  46. 46

    Xie W.J., Wei B.: Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79, 881 (2001)

    Article  Google Scholar 

  47. 47

    Xie W.J., Wei B.: Dynamics of acoustically levitated disk samples. Phys. Rev. 70(4), 046,611 (2004)

    Google Scholar 

  48. 48

    Yoshimoto S., Kobayashi H., Miyatake M.: Float characteristics of a squeeze-film air bearing for a linear motion guide using ultrasonic vibration. Tribol. Inter 40, 503–511 (2007)

    Article  Google Scholar 

  49. 49

    Zipser, L., Lindner, S.: Visualization of vortexes and acoustic sound waves. In: Proceedings of 17th International Congress on Acoustics, vol. I. Physical Acoustics part B, Ultrasonics, Quantum Acoustics and Physical Effect of Sound, pp. 24–25 (2001)

  50. 50

    Zipser, L., Lindner, S., Behrendt, R.: Anordnung zur Messung und visuellen Darstellung von Schalldruckfeldern (Equipment for measurement and visualization of sound fields). Patent DE 10, 057, 922 (2000)

Download references

Author information



Corresponding author

Correspondence to Su Zhao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhao, S., Wallaschek, J. A standing wave acoustic levitation system for large planar objects. Arch Appl Mech 81, 123–139 (2011).

Download citation


  • Acoustic levitation
  • Standing wave
  • Acoustic radiation pressure