Archive of Applied Mechanics

, Volume 81, Issue 2, pp 123–139 | Cite as

A standing wave acoustic levitation system for large planar objects

Original

Abstract

An acoustic levitation system is presented which can levitate planar objects that are much larger than the wavelength of the applied acoustic wave. It uses standing wave field formed by the sound radiator and the levitated planar object. An experimental setup is developed, by which a compact disc is successfully levitated at frequency of 19 kHz and input power of 40 W. The sound field is modeled according to acoustic theory. The mean excess pressure experienced by the levitated object is calculated and compared with experiment results. The influences of the nonlinear effects within the acoustic near-field are discussed. Nonlinear absorption coefficient is introduced into the linear model to give a more precise description of the system. The levitation force is calculated for different levitation distances and driving frequencies. The calculation results show acceptable agreement with the measurement results.

Keywords

Acoustic levitation Standing wave Acoustic radiation pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramov O.: High-intensity Ultrasonics: Theory and Industrial Applications. Gordon and Breach Science Publishers, New York (1998)Google Scholar
  2. 2.
    Amabili M., Pasqualini A.: Natural frequencies and modes of free-dege circular plates vibrating in vacuum or in contact with liquid. J. Sound Vib. 188(5), 685–699 (1995)CrossRefGoogle Scholar
  3. 3.
    Barmatz M., Collas P.: Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields. Acoust. Soc. Am. J. 77, 928–945 (1985)MATHCrossRefGoogle Scholar
  4. 4.
    Bass H.E., Sutherland L.C., Zuckerwar A.J.: Atmospheric absorption of sound: update. J. Acoust. Soc. Am. 88(4), 2019–2021 (1990)CrossRefGoogle Scholar
  5. 5.
    Bass H.E., Sutherland L.C., Zuckerwar A.J., Blackstock D.T., Hester D.M.: Atmospheric absorption of sound: further developments. Acoust. Soc. Am. J. 97(1), 680–683 (1995)CrossRefGoogle Scholar
  6. 6.
    Blevins R.D.: Formulas for Natural Frequency and Mode Shape. Krieger Publishing, Malabar (2001)Google Scholar
  7. 7.
    Bücks K., Müller H.: Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld. Z. Phys. 84, 75–86 (1933)CrossRefGoogle Scholar
  8. 8.
    Chu B.T., Apfel R.E.: Acoustic radiation pressure produced by a beam sound. Acoust. Soc. Am. J. 72, 1673–1687 (1982)CrossRefGoogle Scholar
  9. 9.
    Chu, B.T., Apfel, R.E.: Response to the comments of Nyborg and Rooney. Acoust. Soc. Am. J. 75, 1003–1004 (1984); J. Acoust. Soc. Am. 75, 263–264 (1984)Google Scholar
  10. 10.
    Daidzic, N.: Nonlinear droplet oscillations and evaporation in an ultrasonic levitator. PhD thesis, Lehrstuhl fuer Stroemungsmechanik, Friedrich-Alexander-Universitaet Erlangen (1995)Google Scholar
  11. 11.
    Embleton T.F.W.: Mean force on a sphere in a spherical sound field. I. (Theoretical). Acoust. Soc. Am. J. 26, 40 (1954)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Gabay R., Bucher I.: Resonance tracking in a squeeze-film levitation device. Mech. Syst. Signal Process. 20, 1696–1724 (2006)CrossRefGoogle Scholar
  13. 13.
    Gor’kov L.P.: On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov. Phys. Doklady. 6, 773 (1962)Google Scholar
  14. 14.
    Hasegawa T.: Acoustic-radiation force on a solid elastic sphere. Acoust. Soc. Am. J. 46, 1139 (1969)MATHCrossRefGoogle Scholar
  15. 15.
    Hashimoto Y., Koike Y., Ueha S.: Near-field acoustic levitation of planar specimens using flexural vibration. Acoust. Soc. Am. J. 100, 2057–2061 (1996)CrossRefGoogle Scholar
  16. 16.
    Höppner, J.: Verfahren zur ber hrungslosen handhabung mittels leistungsstarker schallwandler (in German). PhD thesis, Technische Universität München (2002)Google Scholar
  17. 17.
    Hu J., Nakamura K., Ueha S.: An analysis of a noncontact ultrasonic motor with an ultrasonically levitated rotor. Ultrasonics 35, 459–467 (1997)CrossRefGoogle Scholar
  18. 18.
    Ide T., Friend J.R., Nakamura K., Ueha S.: A low-profile design for the noncontact ultrasonically levitated stage. Jpn. J. Appl. Phys. 44, 4662 (2005)CrossRefGoogle Scholar
  19. 19.
    King L.: On the acoustic radiation pressure on spheres. Proc. R. Soc. Lond. Ser. A 147, 212–240 (1934)CrossRefGoogle Scholar
  20. 20.
    Lee C.P., Wang T.G.: Acoustic radiation pressure. Acoust. Soc. Am. J. 94, 1099–1109 (1993)CrossRefGoogle Scholar
  21. 21.
    Leissa W.: Vibration of Plates (NASA SP-160). U.S. Government Printing Office, Washington DC (1969)Google Scholar
  22. 22.
    Lierke E.: Acoustic levitation a comprehensive survey of principles and applications. Acta Acustica United Acustica. 82, 220–237 (1996)Google Scholar
  23. 23.
    Lierke, L., Grossbach, R., Clancy, P.: Acoustic positioning for space processing of materials science samples in mirror furnaces. In: 1983 IEEE Ultrasonic Symposium Proceedings, p. 1129 (1983)Google Scholar
  24. 24.
    Littmann, W.: Piezoelektrische, resonant betriebene Ultraschall-Leistungswandler mit nichtlinearen mechanischen Randbedingungen (in German). PhD thesis, University of Paderborn, Heinz Nixdorf Institute (2003)Google Scholar
  25. 25.
    Littmann, W., Hemsel, T., Kauczor, C., Wallaschek, J., Sinha, M.: Load-adaptive phase-controller for resonant driven piezoelectric devices. In: World Congress Ultrasonics, Paris (2003)Google Scholar
  26. 26.
    Ma D.Y., Shen H.: Handbook of Acoustics. Science Press, Beijing (2006)Google Scholar
  27. 27.
    Minikes A., Bucher I.: Coupled dynamics of a squeeze-film levitated mass and a vibrating piezoelectric disc: numerical analysis and experimental study. J. Sound Vib. 263, 241–268 (2003)CrossRefGoogle Scholar
  28. 28.
    Minikes A., Bucher I., Haber S.: Levitation force induced by pressure radiation in gas squeeze films. Acoust. Soc. Am. J. 116, 217–226 (2004)CrossRefGoogle Scholar
  29. 29.
    Nomura H., Kamakura T., Matsuda K.: Theoretical and experimental examination of near-field acoustic levitation. Acoust. Soc. Am. J. 111, 1578–1583 (2002)CrossRefGoogle Scholar
  30. 30.
    Otsuka, T., Higuchi, K., Seya, K.: Ultrasonic levitation by stepped circular vibrating plate. In: The 10th Symposium on Ultrasonic Electronics, p. 170 (1989)Google Scholar
  31. 31.
    Poynting J.H., Thomson J.J.: A Textbook of Physics. Charles Griffin, London (1904)Google Scholar
  32. 32.
    Rayleigh L.: On the pressure of vibrations. Philos. Mag. 3, 338 (1902)Google Scholar
  33. 33.
    Reinhart, R., Höppner, J., Zimmermann, J.: Non-contact wafer handling using high-intensity ultrasonics. In: IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 139–140 (2001)Google Scholar
  34. 34.
    Rossing T.D.: Springer Handbook of Acoustics. Springer, New York (2007)CrossRefGoogle Scholar
  35. 35.
    Salbu E.: Compressible squeeze films and squeeze bearings. J. Basic Eng. 86, 355–366 (1964)Google Scholar
  36. 36.
    Sherman C.H., Butler J.L.: Transducers and Arrays for Underwater Sound. Springer, New York (2007)Google Scholar
  37. 37.
    Stolarski, T.: Self-lifting contacts: from physical fundamentals to practical applications. In: Proceedings of the I MECH E Part C. J. Mech. Eng. Sci. 220(8), 1211–1218 (2006)Google Scholar
  38. 38.
    Trinh E.H.: Compact acoustic levitation device for studies in fluid dynamics and material science in the laboratory and microgravity. Rev. Sci. Instr. 56, 2059–2065 (1985)CrossRefGoogle Scholar
  39. 39.
    Ueha S., Hashimoto Y., Koike Y.: Non-contact transportation using near-field acoustic levitation. Ultrasonics 38, 26–32 (2000)CrossRefGoogle Scholar
  40. 40.
    Wang, T., Saffren, M.: Acoustic chamber for weightless positioning. AIAA paper 155 (1974)Google Scholar
  41. 41.
    Westervelt P.J.: The mean pressure and velocity in a plane acoustic wave in a gas. Acoust. Soc. Am. J. 22, 319–327 (1950)CrossRefMathSciNetGoogle Scholar
  42. 42.
    Westervelt P.J.: The theory of steady forces caused by sound waves. Acoust. Soc. Am. J. 23, 312–315 (1951)CrossRefMathSciNetGoogle Scholar
  43. 43.
    Westervelt P.J.: Acoustic radiation pressure. Acoust. Soc. Am. J. 29, 26–29 (1957)CrossRefGoogle Scholar
  44. 44.
    Whymark R.: Acoustic field positioning for containerless processing. Ultrasonics 13, 251–261 (1975)CrossRefGoogle Scholar
  45. 45.
    Wiesendanger, M.: Squeeze film air bearings using piezoelectric bending elements. PhD thesis, Ecole polytechnique federale de Lausanne (2001)Google Scholar
  46. 46.
    Xie W.J., Wei B.: Parametric study of single-axis acoustic levitation. Appl. Phys. Lett. 79, 881 (2001)CrossRefGoogle Scholar
  47. 47.
    Xie W.J., Wei B.: Dynamics of acoustically levitated disk samples. Phys. Rev. 70(4), 046,611 (2004)Google Scholar
  48. 48.
    Yoshimoto S., Kobayashi H., Miyatake M.: Float characteristics of a squeeze-film air bearing for a linear motion guide using ultrasonic vibration. Tribol. Inter 40, 503–511 (2007)CrossRefGoogle Scholar
  49. 49.
    Zipser, L., Lindner, S.: Visualization of vortexes and acoustic sound waves. In: Proceedings of 17th International Congress on Acoustics, vol. I. Physical Acoustics part B, Ultrasonics, Quantum Acoustics and Physical Effect of Sound, pp. 24–25 (2001)Google Scholar
  50. 50.
    Zipser, L., Lindner, S., Behrendt, R.: Anordnung zur Messung und visuellen Darstellung von Schalldruckfeldern (Equipment for measurement and visualization of sound fields). Patent DE 10, 057, 922 (2000)Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institute for Dynamics and Vibration ResearchLeibniz University HannoverHannoverGermany

Personalised recommendations