Skip to main content
Log in

Transverse cracking of orthotropic composite laminates: a fracture mechanics approach

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This research is concerned with the fracture mechanics of a laminated composite medium, which contains a central layer sandwiched by two outer layers. There is a periodic array of cracks in the central layer along the central axis of the medium. Fourier transform is used to reduce the problem to the solution of a system of dual integral equations, which are solved by the singular integral equation technique. Rigorous fracture mechanics analysis, which exactly satisfies all boundary conditions of the problem, is conducted. Numerical solutions for the crack tip field and the stress in the medium are obtained for various values such as crack length, crack spacing and layer thickness. Results are also given for the reduction of the equivalent Young’s modulus of the laminate due to multiple cracking. The cases of axial extension and residual temperature change of the composite medium are accounted for.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reifsnider K., Liao K., McCormick R.M.: Fiber fracture in continuous fiber ceramic composites: concepts and observations. J. Eng. Gas Turbines Power Trans. ASME 119, 205–211 (1997)

    Article  Google Scholar 

  2. Park J.M., Kong J.W., Kim J.W., Yoon D.J.: Interfacial evaluation of electrodeposited single carbon fiber/epoxy composites by fiber fracture source location using fragmentation test and acoustic emission. Compos. Sci. Technol. 64, 983–999 (2004)

    Article  Google Scholar 

  3. Landis C.M., McMeeking R.M.: A shear-lag model for a broken fiber embedded in a composite with a ductile matrix. Compos. Sci. Technol. 59, 447–457 (1999)

    Article  Google Scholar 

  4. Wang J., Karihaloo B.L.: Multiple cracking in angle-ply composite laminates. J. Compos. Mater. 29, 1321–1336 (1995)

    Google Scholar 

  5. Camanho P.P., Davil C.G., Pinho S.T.: Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear. Compos. Part A Appl. Sci. Manuf. 37, 165–176 (2006)

    Article  Google Scholar 

  6. Knops M., Bogle C.: Gradual failure in fibre/polymer laminates. Compos. Sci. Technol. 66, 616–625 (2006)

    Article  Google Scholar 

  7. Nguyen B.N., Tucker B.J., Khaleel M.A.: A mechanistic approach to matrix cracking coupled with fiber-matrix debonding in short-fiber composites. J. Eng. Mater. Technol. Trans. ASME 127, 337–350 (2005)

    Article  Google Scholar 

  8. Qu J., Hoiseth K.: Evolution of transverse matrix cracking in cross-ply laminates. Fatigue Fract. Eng. Mater. Struct. 21, 451–464 (1998)

    Google Scholar 

  9. Goyal V.K., Jaunky N.R., Johnson E.R.: Intralaminar and interlaminar progressive failure analyses of composite panels with circular cutouts. Compos. Struct. 64, 91–105 (2004)

    Article  Google Scholar 

  10. Karbhari V.M.: Effects of constituent scale on stress transfer and matrix cracking. Fatigue Fract. Eng. Mater. Struct. 15, 995–1007 (1992)

    Article  Google Scholar 

  11. Hashin Z.: Analysis of stiffness reduction of cracked cross-ply laminates. Eng. Fract. Mech. 25, 771–778 (1986)

    Article  Google Scholar 

  12. McCartney L.N.: Prediction of ply crack formation and failure in laminates. Compos. Sci. Technol. 62, 1619–1631 (2002)

    Article  Google Scholar 

  13. Gudmundson P., Alpman J.: Initiation and growth criteria for transverse matrix cracks in composite laminates. Compos. Sci. Technol. 60, 185–195 (2000)

    Article  Google Scholar 

  14. Adolfsson E., Gudmundson P.: Matrix crack initiation and progression in composite laminates subjected to bending and extension. Int. J. Solids Struct. 36, 3131–3169 (1999)

    Article  MATH  Google Scholar 

  15. Gudmundson P., Ostlund S.: Prediction of thermoelastic properties of composite laminates with matrix cracks. Compos. Sci. Technol. 44, 95–105 (1992)

    Article  Google Scholar 

  16. Razvan A., Reifsnider K.L.: Fiber fracture and strength degradation in unidirectional graphite epoxy composite-materials. Theor. Appl. Fract. Mech. 16, 81–89 (1991)

    Article  Google Scholar 

  17. Zhang H., Minnetyan L.: Variational analysis of transverse cracking and local delamination in [0 m /90 n ] s laminates. Int. J. Solids Struct. 43, 7061–7081 (2006)

    Article  MATH  Google Scholar 

  18. Kashtalyan M., Soutis C.: Modelling off-axis ply matrix cracking in continuous fibre-reinforced polymer matrix composite laminates. J. Mater. Sci. 41, 6789–6799 (2006)

    Article  Google Scholar 

  19. Diaz A.D., Caron J.F., Ehrlacher A.: Analytical determination of the modes I, II and III energy release rates in a delaminated laminate and validation of a delamination criterion. Compos. Struct. 78, 424–432 (2007)

    Article  Google Scholar 

  20. Choi S., Sankar B.V.: Fracture toughness of transverse cracks in graphite/epoxy laminates at cryogenic conditions. Compos. Part B Eng. 38, 193–200 (2007)

    Article  Google Scholar 

  21. Wang J., Karihaloo B.L.: Mode II and Mode III stress singularities and intensities at a crack tip terminating on a transversely isotropic–orthotropic bimaterial interface. Proc R. Soc. Lond. A 444, 447–460 (1994)

    Article  MATH  Google Scholar 

  22. Wang J., Karihaloo B.L.: Mode I stress singularity and intensity at a crack tip terminating on an isotropic-orthotropic bimaterial interface. Int. J. Fract. 74, 325–340 (1996)

    Article  Google Scholar 

  23. Chiu H.P., Yang J.M., Graves J.A.: Effect of fiber coating on creep-behavior of sic fiber-reinforced titanium aluminide matrix composites. J. Mater. Res. 9, 198–206 (1994)

    Article  Google Scholar 

  24. Thayer R.B., Yang J.M.: Creep-behavior of sic fiber-reinforced hot-pressed si3n4 composites. Mater. Sci. Eng. A 160, 169–179 (1993)

    Article  Google Scholar 

  25. Jeng S.M., Yang J.M., Yang C.J.: Fracture mechanisms of fiber-reinforced titanium-alloy matrix composites, III toughening behavior. Mater. Sci. Eng. A 138, 181–190 (1991)

    Article  Google Scholar 

  26. Nied H.F.: Periodic array of cracks in a half plane subjected to arbitrary loading. ASME J. Appl. Mech. 54, 642–648 (1987)

    Article  MATH  Google Scholar 

  27. Sih, G.C., Chen, E.P.: Cracks in composite materials. In: Sih, G.H. (ed.) Mechanics of Fracture. Martinus Nijho, The Hague (1981)

  28. Walls D.P., Bao G., Zok F.W.: Mode I fatigue cracking in a fiber reinforced metal matrix composite. Acta Metall. Mater. 41, 2061–2071 (1993)

    Article  Google Scholar 

  29. Bao G., McMeeking R.M.: Thermomechanical fatigue cracking in fiber reinforced metal-matrix composites. J. Mech. Phys. Solids 43, 1433–1460 (1995)

    Article  MATH  Google Scholar 

  30. Nairn J.A.: On the calculation of energy release rates for cracked laminates with residual stresses. Int. J. Fract. 139, 267–293 (2006)

    Article  Google Scholar 

  31. Walls D.P., McNulty J.C., Zok F.W.: Multiple matrix cracking in a fiber-reinforced titanium matrix composite under high-cycle fatigue. Metall. Mater. Trans. A 27, 1899–1907 (1996)

    Article  Google Scholar 

  32. Okabe T., Takeda N., Komotori J., Shimizu M., Curtin W.A.: A new fracture mechanics model for multiple matrix cracks of SiC fiber reinforced brittle-matrix composites. Acta Mater. 47, 4299–4309 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. L. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B.L., Han, J.C. Transverse cracking of orthotropic composite laminates: a fracture mechanics approach. Arch Appl Mech 80, 1301–1316 (2010). https://doi.org/10.1007/s00419-009-0374-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0374-2

Keywords

Navigation