Skip to main content
Log in

Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k\({\varepsilon}\) model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AR:

Nozzle aspect ratio (AR = L zi /L yi )

c μ :

k\({\varepsilon}\) Turbulence model constant

c 1 :

k\({\varepsilon}\) Turbulence model constant

c 2 :

k\({\varepsilon}\) Turbulence model constant

D :

Equivalent circular jet diameter, m

I :

Turbulence intensity

k :

Mean turbulence kinetic energy per unit mass, m2 s−2

L x :

Length of the computational domain in the x-direction, m

L y :

Length of the computational domain in the y-direction, m

L yi :

Half-length of the inlet vent in the y-direction, m

L z :

Length of the computational domain in the z-direction, m

L zi :

Half-length of the inlet vent in the y-direction, m

M :

Momentum, kgms−2

p :

Pressure, Pa

P k :

Turbulence production due to viscous forces, kgm−1 s−3

Pr :

Prandtl number

Prt :

Turbulent Prandtl number

Re :

Reynolds number based on hydraulic diameter

T :

Temperature, K

u :

Time-averaged velocity component in the x-direction, ms−1

\({{u}^{\prime}_i}\) :

Velocity fluctuations in the x i directions, ms−1

v :

Time-averaged velocity component in the y-direction, ms−1

w :

Time-averaged velocity component in the z-direction, ms−1

x :

Cartesian coordinate along the stream-wise length of domain, m

y :

Cartesian coordinate along the span-wise length of domain, m

y 1/2 :

Half-velocity width in the y-direction based on the u-velocity [u(y 1/2) = u cl/2], m

yt 1/2 :

Half-temperature width in the y-direction [T(yt 1/2) = T cl/2], m

z :

Cartesian coordinate along the lateral length of domain, m

z 1/2 :

Half-velocity width in the z direction based on the u-velocity [u(z 1/2) = u cl/2], m

α :

Thermal diffusivity, m2 s

α t :

Turbulent thermal diffusivity, m2 s

\({\delta_{ij}}\) :

Kronecker delta

\({\varepsilon}\) :

Turbulent dissipation rate, m2 s−3

μ :

Dynamic viscosity, Nsm−2

μ t :

Eddy viscosity, Nsm−2

ρ :

Density, kgm−3

\({\sigma_k}\) :

Turbulence model constant for the k equation

\({\sigma_\varepsilon }\) :

k\({\varepsilon}\) Turbulence model constant

cl:

At the jet centerline

in:

At inlet plane of jet

inf:

At ambient

max:

Maximum

References

  1. Turkus V.A.: Structure of the air inflow jet issuing from a rectangular hole. Zh. Otopl. Vent. 5, 11–19 (1933)

    Google Scholar 

  2. Trentacoste N., Sforza P.M.: Further experimental results for three-dimensional free jets. AIAA J. 5, 885–891 (1967)

    Article  Google Scholar 

  3. Sforza P.M., Steiger M.H., Trentacoste N.: Studies on three-dimensional viscous jets. AIAA J. 4, 800–805 (1966)

    Article  Google Scholar 

  4. Sforza P.M.: A quasi-axisymmetric approximation for turbulent three-dimensional jets and wakes. AIAA J. 7, 1380–1382 (1969)

    Article  Google Scholar 

  5. Krashennikov S.Y., Rogalskaya E.G.: Propagation of jets from rectangular nozzles: free and those close to the screen Izv. Akhad. Nauk SSSR. Zhid. Gaza 4, 39–48 (1979)

    Google Scholar 

  6. Quinn W.R.: Turbulent free jet flows issuing from sharp-edged rectangular slots: the influence of slot aspect ratio. Exp. Thermal Fluid Sci. 5, 203–215 (1992)

    Article  Google Scholar 

  7. Gutmark E.J., Grinstein F.F.: Flow control with noncircular jets. Annu. Rev. Fluid Mech. 31, 239–272 (1999)

    Article  Google Scholar 

  8. Quinn, W.R., Pollard, A., Marsters, G.F.: On ‘saddle-backed’ velocity distributions in three-dimensional turbulent free jets. In: Proceedings of the AIAA 16th Fluid and Plasma Dynamics Conference, Danvers, MA, pp. 1677–1682 (1983)

  9. Marsters G.F.: Spanwise velocity distributions in jets from rectangular slots. AIAA J. 19, 148–152 (1981)

    Article  Google Scholar 

  10. Sforza P.M., Stasi W.: Heated three-dimensional turbulent jets. ASME J. Heat Transf. 101, 353–358 (1979)

    Google Scholar 

  11. Sfeir A.A.: The velocity and temperature fields of rectangular jets. Int. J. Heat Mass Transf. 19, 1289–1297 (1976)

    Article  Google Scholar 

  12. Rajaratnam N.: Turbulent Jets. Elsevier, Amsterdam (1976)

    Google Scholar 

  13. Miller R.S., Madnia C.K., Givi P.: Numerical simulation of non-circular jets. Comput. Fluids 24, 1–25 (1995)

    Article  MATH  Google Scholar 

  14. Wilson R.V., Demuren A.O.: Numerical simulation of turbulent jets with rectangular cross-section. ASME FED 238, 121–127 (1996)

    Google Scholar 

  15. Holdo A.E., Simpson B.A.F.: Simulation of high-aspect-ratio jets. Int. J. Numer. Methods Fluids 39, 343–359 (2002)

    Article  Google Scholar 

  16. Rembold B., Adams N.A., Kleiser L.: Direct numerical simulation of a transitional rectangular jet. Int. J. Heat Fluid Flow 23, 547–553 (2002)

    Article  Google Scholar 

  17. Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  18. Rhie C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  19. Van Leer B.: Toward the ultimate conservative difference scheme. Monotonocity and conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370 (1974)

    Article  Google Scholar 

  20. Davidson, L., Farhanieh, B.: CALC-BFC: A finite-volume code employing collocated variable arrangement and cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries. Department of Thermo and Fluid Dynamics, Chalmers University of Technology, Rept. 91/14 (1991)

  21. Zhou X., Sun Z., Brenner G., Durst F.: Combustion modeling of turbulent jet diffusion H2/air flame with detailed chemistry. Int. J. Heat Mass Transf. 43, 2075–2088 (2000)

    Article  MATH  Google Scholar 

  22. Zhou X., Sun Z., Durst F., Brenner G.: Numerical simulation of turbulent jet flow and combustion. Comput. Math. Appl. 38, 179–191 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  23. Malmström T.G., Kirkpatrick A.T., Christensen B., Knappmiller K.D.: Centreline velocity decay measurements in low-velocity axisymmetric jets. J. Fluid Mech. 346, 363–377 (1997)

    Article  Google Scholar 

  24. Mi J., Nathan G.J., Luxton R.E.: Centreline mixing characteristics of jets from nine differently shaped nozzles. Exp. Fluids 28, 93–94 (2000)

    Article  Google Scholar 

  25. Quinn W.R., Militzer J.: Experimental and numerical study of a turbulent free square jet. Phys. Fluids 31, 1017–1025 (1988)

    Article  Google Scholar 

  26. Klein M., Sadiki A., Janicka J.: Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Int. J. Heat Fluid Flow 24, 785–794 (2003)

    Article  Google Scholar 

  27. Quinn W.R.: Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur. J. Mech. B/Fluids 25, 279–301 (2006)

    Article  MATH  Google Scholar 

  28. Deo R.C., Mi J., Nathan G.J.: The influence of nozzle-exit geometric profile on statistical properties of a turbulent plane jet. Exp. Thermal Fluid Sci. 32, 545–559 (2007)

    Article  Google Scholar 

  29. Habli S., Mhiri H., Golli S.E., Palec G.L., Bournot P.: Numerical study of inflow conditions on an axisymmetric turbulent jet. Int. J. Thermal Sci. 40, 497–511 (2001)

    Article  Google Scholar 

  30. Goldschmidt, V.W., Bradshaw, P.: Effect of nozzle exit turbulence on the spreading (or widening) rate of plane free jets. In: Joint Engineering, Fluid Engineering and Applied Mechanics Conference, ASME, vol. 1–7, Boulder, Colarado, June 22–24 (1981)

  31. Berg J.R., Ormiston S.J., Soliman H.M.: Prediction of the flow structure in a turbulent rectangular free jet. Int. Commun. Heat Mass Transf. 33, 552–563 (2006)

    Article  Google Scholar 

  32. Bejan A.: Convection Heat Transfer, 2nd edn. Wiley, New York (1948)

    Google Scholar 

  33. Zijnen B.G.: Measurement of the velocity distribution in a plane turbulent jet of air. Appl. Sci. Res. A 7, 256–276 (1958)

    Article  Google Scholar 

  34. Behnia M., Parneix S., Durbin P.A.: Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate. Int. J. Heat Mass Transf. 41, 1845–1855 (1998)

    Article  Google Scholar 

  35. Park T.H., Choi H.G., Yoo J.Y., Kim S.J.: Streamline upwind numerical simulation of two-dimensional confined impinging slot jets. Int. J. Heat Mass Transf. 46, 251–262 (2003)

    Article  MATH  Google Scholar 

  36. Pope S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  37. Tsuchiya Y., Horikoshi C., Sato T.: On the spread of rectangular jets. Exp. Fluids 4, 197–204 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Faghani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghani, E., Maddahian, R., Faghani, P. et al. Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio. Arch Appl Mech 80, 727–745 (2010). https://doi.org/10.1007/s00419-009-0340-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0340-z

Keywords

Navigation