Skip to main content
Log in

Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The wrinkling of a stiff thin film bonded on a soft elastic layer and subjected to an applied or residual compressive stress is investigated in the present paper. A three-dimensional theoretical model is presented to predict the buckling and postbuckling behavior of the film. We obtained the analytical solutions for the critical buckling condition and the postbuckling morphology of the film. The effects of the thicknesses and elastic properties of the film and the soft layer on the characteristic wrinkling wavelength are examined. It is found that the critical wrinkling condition of the thin film is sensitive to the compressibility and thickness of the soft layer, and its wrinkling amplitude depends on the magnitude of the applied or residual in-plane stress. The bonding condition between the soft layer and the rigid substrate has a considerable influence on the buckling of the thin film, and the relative sliding at the interface tends to destabilize the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner S., Lacour S.P., Jones J. et al.: Electronic skin: architecture and components. Physica E 25, 326–334 (2004)

    Article  Google Scholar 

  2. Wang G.F., Schiavone P., Ru C.Q.: Surface instability of a semi-infinite harmonic solid under van der Waals attraction. Acta Mech. 180, 1–10 (2005)

    Article  MATH  Google Scholar 

  3. Lacour S.P., Wagner S., Narayan R., Li T., Suo Z.: Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J. Appl. Phys. 100, 014913 (2006)

    Article  Google Scholar 

  4. Choi K.M., Rogers J.A.: A photocurable poly(dimethysiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. J. Am. Chem. Soc. 125, 4060–4061 (2003)

    Article  Google Scholar 

  5. Khang D.Y., Jiang H., Huang Y., Rogers J.A.: A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311, 208–212 (2006)

    Article  Google Scholar 

  6. Jiang H., Sun Y., Rogers J.A., Huang Y.: Mechanics of precisely controlled thin film buckling on elastomeric substrate. Appl. Phys. Lett. 90, 133119 (2007)

    Article  Google Scholar 

  7. Fu Y.Q., Sanjabi S., Barber Z.H. et al.: Evolution of surface morphology in TiNiCu shape memory thin films. Appl. Phys. Lett. 89, 171922 (2006)

    Article  Google Scholar 

  8. Harrison C., Stafford C.M., Zhang W.H., Karim A.: Sinusoidal phase grating created by a tunably buckled surface. Appl. Phys. Lett. 85, 4016–4018 (2004)

    Article  Google Scholar 

  9. Efimenko K., Rackaitis M., Manias E., Vaziri A., Mahadevan L., Genzer J.: Nested self-similar wrinkling patterns in skins. Nat. Mater. 4, 293–297 (2005)

    Article  Google Scholar 

  10. Teixeira A.I., Abrams G.A., Bertics P.J., Murphy C.J., Nealey P.F.: Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 116, 1881–1892 (2003)

    Article  Google Scholar 

  11. Huck W.S.: Hierarchical wrinkling. Nat. Mater. 4, 271–272 (2005)

    Article  Google Scholar 

  12. Moon M.W., Lee S.H., Sun J.Y. et al.: Wrinkled hard skins on polymers created by focused ion beam. Proc. Natl. Aca. Sci. USA 104, 1130–1133 (2007)

    Article  Google Scholar 

  13. Stafford C.M., Harrison C., Beers K. et al.: A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat. Mater. 3, 545–550 (2004)

    Article  Google Scholar 

  14. Cerda E., Mahadevan L.: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302 (2003)

    Article  Google Scholar 

  15. Genzer J., Groenewold J.: Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter 2, 310–323 (2006)

    Article  Google Scholar 

  16. Chen X., Hutchinson J.W.: Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71, 597–603 (2004)

    Article  MATH  Google Scholar 

  17. Huang Z.Y., Hong W., Suo Z.: Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J. Mech. Phys. Solids 53, 2101–2118 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huang R.: Kinetic wrinkling of an elastic film on a viscoelastic substrate. J. Mech. Phys. Solids 53, 63–89 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Song J., Jiang H., Liu Z.J. et al.: Buckling of a stiff thin film on a compliant substrate in large deformation. Int. J. Solids Stuct. 45, 3107–3121 (2008)

    Article  MATH  Google Scholar 

  20. Jiang H., Sun Y., Rogers J.A., Huang Y.: Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int. J. Solids Struct. 45, 2014–2023 (2008)

    Article  MATH  Google Scholar 

  21. Jiang H., Khang D.Y., Fei H. et al.: Finite width effect of thin-films buckling on compliant substrate: experimental and theoretical studies. J. Mech. Phys. Solids 56, 2585–2598 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huang S.Q., Feng X.Q.: Spinodal surface instability of soft elastic thin films. Acta Mech. Sinica 24, 289–296 (2008)

    Article  MathSciNet  Google Scholar 

  23. Pan X.H., Huang S.Q., Yu S.W., Feng X.Q.: Interfacial slippage effect on the surface instability of a thin elastic film under van der Waals force. J. Phys. D: Appl. Phys. 42, 055302 (2009)

    Article  Google Scholar 

  24. Plantema F.J.: Sandwich Construction. Wiley, New York (1966)

    Google Scholar 

  25. Allen H.G.: Analysis and Design of Structural Sandwich Panels. Pergamon, Oxford (1969)

    Google Scholar 

  26. Zenkert D.: An Introduction to Sandwich Construction. Chameleon, London (1995)

    Google Scholar 

  27. Biot M.A.: Folding instability of a layered viscoelastic medium under compression. Proc. R. Soc. Lond. A 242, 444–454 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wong Y.C., Hoadley P.G.: Face wrinkling of sandwich plates and cylinders. J. Eng. Mech. 97, 1071–1081 (1971)

    Google Scholar 

  29. Gdoutos E.E., Daniel I.M., Wang K.A.: Compression facing wrinkling of composite sandwich structures. Mech. Mater. 35, 511–522 (2003)

    Article  Google Scholar 

  30. Fagerberg L., Zenkert D.: Effects of anisotropy and multiaxial loading on the wrinkling of sandwich panels. J. Sandw. Struct. Mater. 7, 177–194 (2005)

    Article  Google Scholar 

  31. Lopatin A.V., Morozov E.V.: Symmetrical facing wrinkling of composite sandwich panels. J. Sandw. Struct. Mater. 10, 475–497 (2008)

    Article  Google Scholar 

  32. Yoo P.J., Suh K.Y., Park Y., Lee H.H.: Physical self-assembly of microstructures by anisotropic buckling. Adv. Mater. 14, 1383–1387 (2002)

    Article  Google Scholar 

  33. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part I: formulation, linear stability of cylindrical patterns, secondary bifurcations. J. Mech. Phys. Solids 56, 2401–2421 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  34. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part II: a global scenario for the formation of herringbone pattern. J. Mech. Phys. Solids 56, 2422–2443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  35. Audoly B., Boudaoud A.: Buckling of a stiff film bound to a compliant substrate—Part III: herringbone solutions at large buckling parameter. J. Mech. Phys. Solids 56, 2444–2458 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Huang S.Q., Li B., Feng X.Q.: Three-dimensional analysis of spontaneous surface instability and pattern formation of thin soft films. J. Appl. Phys. 103, 083501 (2008)

    Article  Google Scholar 

  37. Landau L.D., Lifshitz E.M.: Theory of Elasticity. Pergamon, London (1970)

    Google Scholar 

  38. Lu W., Suo Z.: Dynamics of nanoscale pattern formation of an epitaxial monolayer. J. Mech. Phys. Solids 49, 1937–1950 (2001)

    Article  MATH  Google Scholar 

  39. Lu W., Suo Z.: Symmetry breaking in self-assembled monolayers on solid surfaces: anisotropic surface stress. Phys. Rev. B 65, 085401 (2002)

    Article  Google Scholar 

  40. Huang R., Stafford C.M., Vogt B.D.: Effect of surface properties on wrinkling of ultrathin films. J. Aerosp. Eng. 20, 38–44 (2007)

    Article  Google Scholar 

  41. Cahn J.W.: Surface stress and the chemical-equilibrium of small crystals. I: the case of the isotropic surface. Acta Metall. 28, 1333–1338 (1980)

    Article  Google Scholar 

  42. Huang S.Q., Li Q.Y., Feng X.Q., Yu S.W.: Pattern instability of a soft elastic thin film under van der Waals forces. Mech. Mater. 38, 88–99 (2006)

    Article  Google Scholar 

  43. Cammarta R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, 1–38 (1994)

    Article  Google Scholar 

  44. Ibach H.: The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 193–263 (1997)

    Article  Google Scholar 

  45. Song J., Jiang H., Choi W.M. et al.: An analytical study of two-dimensional buckling of thin films on compliant substrates. J. Appl. Phys. 103, 014303 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Qiao Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Huang, SQ. & Feng, XQ. Buckling and postbuckling of a compressed thin film bonded on a soft elastic layer: a three-dimensional analysis. Arch Appl Mech 80, 175–188 (2010). https://doi.org/10.1007/s00419-009-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0313-2

Keywords

Navigation