Skip to main content
Log in

Weak shock waves and shear bands in compressible, inextensible thermoelastic solids

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

A study of weak shock waves propagating into a solid, which is compressible but temperature-dependent extensible in a specified direction is presented. The inextensible solid is also considered. The constitutive equations of constrained thermoelastic material are written as the summation of constrained and unconstrained counterparts of the relevant quantities. The equation of motion of weak shock waves, which is recovered by the theory of singular surfaces, reduces to an eigenvalue problem. The solution of this eigenvalue problem yields the speeds of propagation of weak shock waves. In the case of an undeformed solid, the speeds of these waves are explicitly expressed. Additionally, a discussion on the ductility limits of constrained thermoelastic material subjected to the uniaxial and biaxial extensions is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adkins J.E., Rivlin R.S.: Large elastic deformations of isotropic materials X. Reinforcement by inextensible cords. Phil. Trans. R Soc. A 248, 201 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  2. Spencer A.J.M.: Deformations of Fibre-Reinforced Materials. Oxford University Press, London (1972)

    MATH  Google Scholar 

  3. Spencer A.J.M.: Dynamics of ideal fibre-reinforced rigid-plastic beams. J. Mech. Phys. Solids 22, 147–159 (1974)

    Article  MATH  Google Scholar 

  4. Horgan C.O., Saccomandi G.: A new constitutive theory for fiber-reinforced incompressible nonlinearly elastic solids. J. Mech. Phys. Solids 53, 1985–2015 (2005)

    Article  MathSciNet  Google Scholar 

  5. Weitsman Y.: On wave propagation and energy scattering in materials reinforced by inextensible fibers. Int. J. Solids Struct. 8, 627–650 (1972)

    Article  MATH  Google Scholar 

  6. Chen P.J., Gurtin M.E.: On wave propagation in inextensible elastic bodies. Int. J. Solids Struct. 10, 275–281 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen P.J., Nunziato J.W.: On wave propagation in perfectly heat conducting inextensible elastic bodies. J. Elast. 5, 155–160 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  8. Scott N.H.: Acceleration waves in constrained elastic materials. Arch. Rat. Mech. Anal. 58, 57–75 (1975)

    Article  MATH  Google Scholar 

  9. Reddy B.D.: The propagation and growth of acceleration waves in constrained thermoelastic materials. J. Elast. 14, 387–402 (1984)

    Article  MATH  Google Scholar 

  10. Trapp J.A.: Reinforced materials with thermomechanical constraints. Int. J. Eng. Sci. 9, 757–773 (1971)

    Article  MATH  Google Scholar 

  11. Bleach G.P., Reddy B.D.: The influence of constraints on the properties of acceleration waves in isotropic thermoelastic media. Arch. Rat. Mech. Anal. 98, 31–64 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Scott N.H.: Small vibrations of prestrained constrained elastic materials: the idealized fibre-reinforced material. Int. J. Solids Struct. 27, 1969–1980 (1991)

    Article  MATH  Google Scholar 

  13. Rogerson G.A., Scott N.H.: Wave propagation in singly-constrained and nearly-constrained elastic materials. Q. J. Mech. Appl. Math. 45, 77–99 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Rogerson G.A., Scott N.H.: Doubly constrained elastic wave propagation. Int. J. Solids Struct. 31, 2769–2792 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bortoloni L., Pastrone F.: Waves in approximately constrained materials and applications to fiber-reinforced composites. Wave Motion 36, 275–286 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Tonon M.L.: Waves in constrained linear elastic materials. J. Elast. 69, 15–39 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gültop T.: Weak shock waves in constrained thermoelastic solids. Arch. Appl. Mech. 72, 511–521 (2002)

    Article  MATH  Google Scholar 

  18. Fleck N.A.: Compressive failure of fiber composites. Adv. Appl. Mech. 33, 43–117 (1997)

    Article  Google Scholar 

  19. Merodio J., Pence T.J.: Kink surfaces in a directionally reinforced neo-Hookean material under plane deformation: I Mechanical equilibrium. J. Elast. 62, 119–144 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Merodio J., Ogden R.W.: Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation. Int. J. Solids Struct. 40, 4707–4727 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ciarlet P.G.: Mathematical Elasticity: Three Dimensional Elasticity, vol.~1. North-Holland, Amsterdam (1988)

    Google Scholar 

  22. Casey J.: Treatment of internally constrained materials. J. Appl. Mech. T. ASME 62, 542–544 (1995)

    MATH  Google Scholar 

  23. Casey J., Krishnaswamy S.: A characterization of internally constrained thermoelastic materials. Math. Mech. Solids 3, 71–89 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. Lubarda V.A.: On thermodynamic potentials in linear thermoelasticity. Int. J. Solids Struct. 41, 7377–7398 (2004)

    Article  MATH  Google Scholar 

  25. Eringen A.C., Şuhubi E.S.: Elastodynamics vol. I. Academic Press, New York (1975)

    Google Scholar 

  26. Truesdell C., Toupin R.A.: Classical field theories of mechanics. In: Flügge, S. (eds) Handbuch der physik III/1, Springer, Berlin (1960)

    Google Scholar 

  27. Eringen A.C.: Mechanics of Continua, 2nd edn. Krieger Publishing Company, New York (1980)

    Google Scholar 

  28. Reddy B.D.: The occurrence of surface instabilities and shear bands in plane strain deformation of an elastic half space. Q. J. Mech. Appl. Math. 36, 337–350 (1983)

    Article  MATH  Google Scholar 

  29. Gültop T.: Existence of shear bands in hyperelastic solids. Mech. Res. Commun. 29, 431–436 (2002)

    Article  MATH  Google Scholar 

  30. Abeyaratne R., Triantafyllidis N.: The emergence of shear bands in plane strain. Int. J. Solids Struct. 12, 1113–1134 (1981)

    Article  Google Scholar 

  31. Rice J.R.: The localization of plastic deformation. In: Koiter, W.T. (eds) Theoretical and applied mechanics, pp. 207–220. North-Holland, Amsterdam (1976)

    Google Scholar 

  32. Mengi Y., McNiven H.D, Erdem A.Ü.: A theory for the formation of lüders bands in a plate subjected to uniaxial tension. Int. J. Solids Struct. 11, 813–825 (1975)

    Article  MATH  Google Scholar 

  33. Needleman A.: Dynamic shear band development in plane strain. J. Appl. Mech. 56, 1–9 (1989)

    Article  MathSciNet  Google Scholar 

  34. Zhang Y.Q., Lu Y., Qiang H.F.: Influence of damage on properties of strain localization in geomaterials at plane stress and plane strain. Arch. Appl. Mech. 74, 102–117 (2004)

    MATH  Google Scholar 

  35. Alyavuz, B., Gültop, T.: Weak shock waves and shear bands in thermoelastic materials. Acta. Mech. (2008) doi:10.1007/s00707-008-0117-4

  36. Bardet J.P.: A comprehensive review of strain localization in elastoplastic soils. Comput. Geo. 10, 163–188 (1990)

    Article  Google Scholar 

  37. Triantafyllidis N., Abeyaratne R.: Instabilities of a finitely deformed fiber-reinforced elastic material. J. Appl. Mech. T ASME 50, 149–156 (1983)

    Article  MATH  Google Scholar 

  38. Kurashige M.: On elastostatic shocks in an ideal fiber-reinforced composite (Case of plane deformation). Technol. Rep. Tohoku Univ. 49, 115–128 (1984)

    Google Scholar 

  39. Hadamard, J.: Leçons sur la propagation des ondes et les equations de l’hydrodynamique. Paris (1903)

  40. Hill R.: Acceleration waves in solids. J. Mech. Phys. Solids 10, 1–16 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  41. Mandel J.: Conditions de stabilite et postulat de drucker. In: Kravtencko, J., Sirieys, P.M. (eds) Rheology and soil mechanics, Springer, Berlin (1966)

    Google Scholar 

  42. Gültop, T., Alyavuz, B.: Existence of shear bands in thermoelastic solids. In: Proceedings of the 6th European Solid Mechanics Conference. Budapest, Hungary, 28 August–1 September (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Alyavuz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alyavuz, B., Gültop, T. Weak shock waves and shear bands in compressible, inextensible thermoelastic solids. Arch Appl Mech 79, 1145–1161 (2009). https://doi.org/10.1007/s00419-009-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-009-0298-x

Keywords

Navigation