Skip to main content
Log in

Free-field dynamic response of an inhomogeneous half-space

  • Special Issue
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

In this work, elastic wave propagation in the inhomogeneous half-space is solved by an analytical approach based on plane wave decomposition in conjunction with appropriate functional transformations for the displacement vector. Specifically, free-field motions are recovered at the surface of a half-space with either quadratic or exponential type of depth-dependent material parameters. The incident wave is a time harmonic, planar pressure wave and the resulting free-field motions are obtained in closed form, first for the full-space and then for the half-space by adding the reflected waves. Parametric studies show marked differences in the results when compared against the corresponding ones for a homogeneous background. Finally, sensitivities of the free-field waves on the basic characteristics of the underlying inhomogeneous material and of the incoming wave are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ewing W.M., Jardetzky W.S., Press F.: Elastic Waves in Layered Media. McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  2. Brekhovskikh L.M., Bayer R.: Waves in Layered Media. Academic Press, New York (1976)

    Google Scholar 

  3. Achenbach J.D.: Wave Propagation in Elastic Solids. North Holland, Amsterdam (1973)

    MATH  Google Scholar 

  4. Aki K., Richards P.G.: Quantitative Seismology: Theory and Methods. Freeman, San Francisco (1980)

    Google Scholar 

  5. Ben-Menahem A., Singh S.J.: Seismic Waves and Sources. Springer, New York (1981)

    MATH  Google Scholar 

  6. Lay T., Wallace T.C.: Modern global seismology. Geophys. Prosp. 45, 775–793 (1995)

    Google Scholar 

  7. Udias A.: Principles of Seismology: Waves in Layered Media. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  8. Swanger H.J., Boore D.M.: Simulation of strong-motion displacements using surface-wave modal superposition. Bull. Seism. Soc. Am. 68, 907–922 (1978)

    Google Scholar 

  9. Vrettos C.H.: In-plane vibrations of soil deposits with variable shear modulus: I. Surface waves. Int. J. Num. Anal. Meth. Geom. 14, 209–222 (1990)

    Article  MATH  Google Scholar 

  10. Vrettos C.H.: Forced anti-plane vibrations at the surface of an inhomogeneous half-space. Soil Dyn. Earthq. Eng. 10, 230–235 (1991)

    Article  Google Scholar 

  11. Spencer A.J.M., Selvadurai A.P.S.: Some generalized anti-plane strain problems for an inhomogeneous elastic half-space. J. Eng. Math. 34, 403–416 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Swanger H.J., Boore D.M.: Simulation of strong-motion displacements using surface-wave modal superposition. Bull. Seism. Soc. Am. 68, 907–922 (1978)

    Google Scholar 

  13. Thomson W.T.: Transmission of elastic waves through a stratified solid medium. J. Appl. Phys. 21, 89–93 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haskell N.A.: The dispersion of surface waves in multilayered media. Bull. Seism. Soc. Am. 43, 17–34 (1953)

    MathSciNet  Google Scholar 

  15. Knopff L.: A matrix method for elastic wave problems. Bull. Seism. Soc. Am. 54, 431–438 (1964)

    Google Scholar 

  16. Panza G.F.: Synthetic seismograms: The Rayleigh waves modal summation. J. Geophys. 58, 125–145 (1985)

    Google Scholar 

  17. Panza G.F., Romanelli F., Vaccari F.: Seismic wave propagation in laterally heterogeneous anelastic media: Theory and applications to seismic zonation. Adv. Geophys. 43, 1–95 (2000)

    Article  Google Scholar 

  18. Sanchez-Sesma F.J., Chavez-Garcia F.J., Bravo M.A.: Seismic response of a class of alluvial valleys for incident SH waves. Bull. Seism. Soc. Am. 78, 83–95 (1988)

    Google Scholar 

  19. Dineva P., Vaccari F., Panza G.: Hybrid modal summation-BIE method for site effect estimation of a seismic region in laterally varying media. J. Theo. Appl. Mech. 33, 55–88 (2004)

    Google Scholar 

  20. Manolis G.D., Shaw R.P.: Green’s function for a vector wave equation in a mildly heterogeneous continuum. Wave Motion 24, 59–83 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Manolis G.D., Rangelov T.V., Dineva P.S.: Free-field wave solutions in a half-plane exhibiting a special-type of continuous inhomogenity. Wave Motion 44, 304–321 (2007)

    Article  MathSciNet  Google Scholar 

  22. Rangelov T.V., Dineva P.S.: Steady-state plane wave propagation in inhomogeneous 3D media. J. Theo. Appl. Mech. 35, 17–38 (2005)

    MathSciNet  Google Scholar 

  23. Ward W.H., Burland J.B., Gallois R.W.: Geotechnical assessment of a site at Munford, Norfolk, for a large proton accelerator. Geotechnique 18, 399–431 (1968)

    Article  Google Scholar 

  24. Turcotte D.L., Schubert P.: Geodynamic Applications of Continuum Physics to Geological Problems. Wiley, New York (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Manolis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manolis, G.D., Rangelov, T.V. & Dineva, P.S. Free-field dynamic response of an inhomogeneous half-space. Arch Appl Mech 79, 595–603 (2009). https://doi.org/10.1007/s00419-008-0288-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0288-4

Keywords

Navigation