Skip to main content
Log in

Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper is concerned with the dominant dissipation mechanism for a rolling disk in the final stage of its motion. The aim of this paper is to present the various dissipation mechanisms for a rolling disk which are used in the literature in a unified framework. Furthermore, new experiments on the ‘Euler disk’ using a high-speed video camera and a novel image analysis technique are presented. The combined experimental/theoretical approach of this paper sheds some more light on the dominant dissipation mechanism on the time-scale of several seconds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Appell P.: Sur l’intégration des équations du mouvement d’un corps pesant de raévolution roulant par une arête circulaire sur un plan horizontal; cas particulier du cerceau. Rendiconti del Circolo Matematico di Palermo 14, 1–6 (1900)

    Article  MATH  Google Scholar 

  2. Batista M.: Steady motion of a rigid disk of finite thickness on a horizontal plane. Int. J. Non-Linear Mech. 41, 605–621 (2006)

    Article  MATH  Google Scholar 

  3. Bildsten L.: Viscous dissipation for Euler’s disk. Phys. Rev. E 66, 056309 (2002)

    Article  MathSciNet  Google Scholar 

  4. Borisov A.V., Mamaev I.S., Kilin A.A.: Dynamics of rolling disk. Regular Chaotic Dyn. 8(2), 201–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caps H., Dorbolo S., Ponte S., Croisier H., Vandewalle N.: Rolling and slipping motion of Euler’s disk. Phys. Rev. E 69, 056610 (2004)

    Article  MathSciNet  Google Scholar 

  6. Cendra H., Diaz V.A.: The Lagrange–D’Alembert–Poincaraé equations and integrability for the Euler’s disk. Regular Chaotic Dyn. 12(1), 56–67 (2007)

    Article  MathSciNet  Google Scholar 

  7. Chaplygin S.A.: On the motion of a heavy body of revolution on a horizontal plane (in Russian). Phys. Section Imperial Soc. Friends Phys. Anthropol. Ethnogr. 9(1), 10–16 (1897)

    Google Scholar 

  8. Easwar K., Rouyer F., Menon N.: Speeding to a stop: the finite-time singularity of a spinning disk. Phys. Rev. E 66, 045102(R) (2002)

    Article  Google Scholar 

  9. Glocker, Ch.: Set-valued force laws, dynamics of non-smooth systems, vol. 1. Lecture Notes in Applied Mechanics. Springer, Berlin (2001)

  10. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    MATH  Google Scholar 

  11. Kessler P., O’Reilly O.M.: The ringing of Euler’s disk. Regular Chaotic Dyn. 7(1), 49–60 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Korteweg D.J.: Extrait d’une lettre à M. Appell. Rendiconti del Circolo Matematico di Palermo 14, 7–8 (1900)

    Article  Google Scholar 

  13. Le Saux C., Leine R.I., Glocker Ch.: Dynamics of a rolling disk in the presence of dry friction. J. Nonlinear Sci. 15(1), 27–61 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Leine R.I., Glocker Ch.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A Solids 22, 193–216 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leine, R.I., Le Saux, C., Glocker, Ch.: Friction models for the rolling disk. In: Proceedings of the ENOC 2005 Conference (August 7-12 2005). Eindhoven, CD-ROM

  16. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints, vol. 36. Lecture Notes in Applied and Computational Mechanics. Springer, Berlin (2008)

  17. McDonald, A.J., McDonald, K.T.: The rolling motion of a disk on a horizontal plane. eprint: arXiv:physics/0008227v3 (2001)

  18. Moffatt H.K.: Euler’s disk and its finite-time singularity. Nature (London) 404, 833–834 (2000)

    Article  Google Scholar 

  19. Moffatt H.K.: Moffatt replies. Nature (London) 408, 540 (2000)

    Article  Google Scholar 

  20. O’Reilly O.M.: The dynamics of rolling disks and sliding disks. Nonlinear Dyn. 10(3), 287–305 (1996)

    Article  MathSciNet  Google Scholar 

  21. Petrie D., Hunt J.L., Gray C.G.: Does the Euler disk slip during its motion?. Am. J. Phys. 70(10), 1025–1028 (2002)

    Article  Google Scholar 

  22. Stanislavsky A.A., Weron K.: Nonlinear oscillations in the rolling motion of Euler’s disk. Physica D 156, 247–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. van den Engh G., Nelson P., Roach J.: Numismatic gyrations. Nature (London) 408, 540 (2000)

    Article  Google Scholar 

  24. Villanueva R., Epstein M.: Vibrations of Euler’s disk. Phys. Rev. E 71, 066609 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Leine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leine, R.I. Experimental and theoretical investigation of the energy dissipation of a rolling disk during its final stage of motion. Arch Appl Mech 79, 1063–1082 (2009). https://doi.org/10.1007/s00419-008-0278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0278-6

Keywords

Navigation