Skip to main content
Log in

Saint-Venant problem of three-dimensional linear viscoelasticity in the Hamiltonian system

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The traditional Saint-Venant problem of three-dimensional viscoelasticity is discussed under the Hamiltonia system with the use of the Laplace integral transformation, and the original problem is transformed into finding eigenvalues and eigenvectors of the Hamiltonia operator matrix. Since local effect near the boundary is usually neglected, all solutions of Saint-Venant problems can be obtained directly by the combinations of zero eigenvectors. Moreover, the adjoint relationships of the symplectic orthogonality of zero eigenvectors in the Laplace domain are generalized to the time domain. Therefore the problem can be discussed directly in the eigenvector space of the time domain, and the iterative application of Laplace transformation is not needed. Simply by applying the adjoint relationships of the symplectic orthogonality, an effective method for boundary condition is given. Based on this method, some typical examples are discussed, in which the whole character of total creep and relaxation of viscoelasticity is clearly revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Danyluk M.J., Geubelle P.H., Hilton H.H.: Two-dimensional and three-dimensional fracture in viscoelastic materials. Int. J. Solids Struct. 35, 3831–3853 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ashish O., Ray V.J., Roderic S.L.: Generalized solution for predicting relaxation from creep in soft tissue: application to ligament. Int. J. Mech. Sci. 48, 662–673 (2006)

    Article  Google Scholar 

  3. Vinogradov V., Milton G.W.: The total creep of viscoelastic composites under hydrostatic or antiplane loading. J. Mech. Phys. Solids 53, 1248–1279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. De Chant L.J.: Impulsive displacement of a quasi-linear viscoelastic material through accurate numerical inversion of the laplace transform. Comput. Math. Appl. 43, 1161–1170 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Temel B. et al.: Quasi-static and dynamic response of viscoelastic helical rods. J. Sound Vib. 271, 921–935 (2004)

    Article  Google Scholar 

  6. Huang Y., Crouch S.L. et al.: A time domain direct boundary integral method for a viscoelastic plane with circular holes and elastic inclusions. Eng. Anal. Bound. Elem. 29, 725–737 (2005)

    Article  Google Scholar 

  7. Schanz M., Antes H. et al.: Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua. Comput. Struct. 83, 673–684 (2005)

    Article  Google Scholar 

  8. Syngellakis S.: Boundary element methods for polymer analysis. Eng. Anal. Bound. Elem. 27, 125–135 (2003)

    Article  MATH  Google Scholar 

  9. Schanz M., Antes H.: A new visco- and elastodynamic time domain boundary element formulation. Comput. Mech. 20, 452–45 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yun H., Sofia G.M. et al.: Complex variable boundary integral method for linear viscoelasticity: Part I—basic formulations. Eng. Anal. Bound. Elem. 30, 1049–1056 (2006)

    Article  Google Scholar 

  11. Mesquita A.D., Coda H.B.: A boundary element methodology for viscoelastic analysis: Part I with cells. Appl. Math. Model. 31, 1149–1170 (2007)

    Article  MATH  Google Scholar 

  12. Saint-Venant B.: Memoire sur la torsion des prismes. Paris Memoires des Savants etrangers 14, 233–560 (1856)

    Google Scholar 

  13. Saint-Venant B.: Memoire sur la flexion des prismes. J. Math. Pures. Appl. 1, 89–189 (1856)

    Google Scholar 

  14. Chirita, S., Iasi R.: Saint-Venant problem and semi-inverse solutions in linear viscoelasticity 94, 221–232 (1992)

  15. Chirita S., Ciarletta M., Fabrizio M.: Saint-Venant’s principle in linear viscoelasticity. Int. J. Eng. Sci. 35, 1221–123 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhong W.X.: Duality System in Applied Mechanics and Optimal Control. Kluwer Academic Publishers, New York (2004)

    MATH  Google Scholar 

  17. Xu X.S., Zhang W.X. et al.: An application of the symplectic system in two-dimensional viscoelasticity. Int. J. Eng. Sci. 44, 897–914 (2006)

    Article  Google Scholar 

  18. Stephen N.G., Wang M.Z.: Decay rates for the hollow circular cylinder. J. Appl. Mech. 59, 747–753 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weixiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W. Saint-Venant problem of three-dimensional linear viscoelasticity in the Hamiltonian system. Arch Appl Mech 79, 793–806 (2009). https://doi.org/10.1007/s00419-008-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0253-2

Keywords

Navigation