Skip to main content
Log in

Numerical simulations of gas–liquid–solid flows in a hydrocyclone separator

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The flow behavior in hydrocyclones is quite complex. In this study, the computational fluid dynamics (CFD) method was used to simulate the flow fields inside a hydrocyclone in order to investigate its separation efficiency. In the computational fluid dynamics study of hydrocyclones, the air-core dimension is a key to predicting the mass split between the underflow and overflow. In turn, the mass split influences the prediction of the size classification curve. Three models, the \({k - \varepsilon}\) model, the Reynolds stress model (RSM) without considering the air-core, and the Reynolds stress turbulence model with the volume of fluid (VOF) multiphase model for simulating the air-core, were compared in terms of their predictions of velocity, axial and tangential velocity distributions, and separation proportion. The RSM with air-core simulation model, since it reproduces some detailed features of the turbulence and multiphase, clearly predicted the experimental data more closely than did the other two models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bretney, E.: Water purifier. US Patent no. 543 105 (1891)

  2. Kelsall D.F.: A study of the motion of solid particles in a hydraulic cyclone. Trans. Inst. Chem. Eng. 30, 87–108 (1952)

    Google Scholar 

  3. Kelsall D.F.: A further study on the hydraulic cyclone. Chem. Eng. Sci. 2, 254–272 (1953)

    Article  Google Scholar 

  4. Bradley D.: The Hydrocyclone. Pergamon, London (1965)

    Google Scholar 

  5. Bloor M.I.G., Ingham D.B.: Theoretical investigation of the flow in a conical hydrocyclone. Trans. Inst. Chem. Eng. 51, 36–41 (1973)

    Google Scholar 

  6. Bloor M.I.G., Ingham D.B.: On the efficiency of the industrial cyclone. Trans. Inst. Chem. Eng. 51, 173–176 (1973)

    Google Scholar 

  7. Bloor M.I.G., Ingham D.B.: Turbulent spin in a cyclone. Trans. Inst. Chem. Eng. 53, 1–46 (1975)

    Google Scholar 

  8. Svarovsky L.: Hydrocyclones, 1st edn. Holt, Rinehart, and Winston, London (1984)

    Google Scholar 

  9. Barrientos, A., Sampaio, R., Concha, F.: Effect of the air core on the performance of a hydrocyclone. In: Proceedings XVIII International Mineral Processing Congress, pp. 267–270 (1993)

  10. Rajamani R.K., Devulapalli B.: Hydrodynamic modeling of swirling flow and particle classification in large-scale-hydrocyclones. KONA 12, 95–104 (1994)

    Google Scholar 

  11. Ma L., Ingham D.B., Wen X.: Numerical modelling of the fluid and particle penetration through small sampling cyclones. J. Aerosol Sci. 31(9), 1097–1119 (2000)

    Article  Google Scholar 

  12. Dyakowski T., Williams R.A.: Prediction of air-core size and shape in a hydrocyclone. Int. J. Miner. Process. 43, 1–14 (1995)

    Article  Google Scholar 

  13. Fraser S.M., Abdel Rasek A.M., Abdullah M.Z.: Computational and experimental investigations in a cyclone dust separator. Proc. Inst. Grid. Engrs. 211E, 247–257 (1997)

    Article  Google Scholar 

  14. He P., Salcudean M., Gartshore I.S.: A numerical simulation of hydrocyclones. Trans. Inst. Chem. Eng. 77, 429–441 (1999)

    Article  Google Scholar 

  15. Suasnabar, D.J.: Dense Medium Cyclone Performance, enhancements via computational modeling of the physical process. Ph.D. Thesis, University of New South Wales (2000)

  16. Schuetz S., Mayer G., Bierdel M., Piesche M.: Investigations on the flow and separation behaviour of hydrocyclones using computational fluid dynamics. Int. J. Miner. Process. 73, 229–23717 (2004)

    Article  Google Scholar 

  17. Narasimha M., Sripriya R., Banerjee P.K.: CFD modelling of hydrocyclone—prediction of cut-size. Int. J. Miner. Process. 71(1), 53–68 (2005)

    Article  Google Scholar 

  18. Launder B.E., Reece G.J., Rodi W.: Progress in the development of a Reynolds—stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)

    Article  MATH  Google Scholar 

  19. Boysan F., Ayers W.H., Swithenbank J.: A fundamental mathematical modelling approach to cyclone design. Trans. Inst. Chem. Eng. 60, 222–230 (1982)

    Google Scholar 

  20. Cullivan J.C., Williams R.A., Cross C.R.: Understanding the hydrocyclone separator through computational fluid dynamics. Trans. Inst. Chem. Eng. 81A, 455–465 (2003)

    Article  Google Scholar 

  21. Slack M.D., Prasad R.O., Bakker A., Boysan F.: Advances in cyclone modeling using unstructured grids. Trans. Inst. Chem. Eng. 78A, 1098–1104 (2000)

    Article  Google Scholar 

  22. Brennan, M.S., Subramanian, V.J., Rong, R., Holtham, P.N., Lyman, G.J., Napier-Munn, T.J.: Towards a new understanding of the cyclone separator. In: Proceedings of XXII International Mineral Processing Congress. 29,September–3,October, Cape Town, South Africa (2003)

  23. Delgadillo J.A., Rajamani R.K.: A comparative study of three turbulence-closure models for the hydrocyclone problem. Int. J. Miner. Process. 77(4), 217–230 (2005)

    Article  Google Scholar 

  24. Hsieh, K.T.: A phenomenological model of the hydrocyclone. Ph.D. Thesis, University of Utah, USA (1988)

  25. Speziale C.G., Sarkar S., Gatski T.B.: Modelling the pressurestrain correlation of turbulence. An invariant dynamical systems approach. J. Fluid Mech. 227, 245–274 (1991)

    Article  MATH  Google Scholar 

  26. Castro, O., Concha, F.: Air core modeling for an industrial hydrocyclone. International Conference on Hydrocyclones’96, Cambridge, UK, 2–4 April, pp. 229–240 (1996)

  27. Concha F., Barrientos A., Montero J., Sampio R.: Air core and roping in hydrocyclones. Int. J. Miner. Process. 44/45, 743–749 (1996)

    Article  Google Scholar 

  28. Steffens P.R., Whiten W.J., Appleby S., Hitchins J.: Prediction of air core diameters for hydrocyclones. Int. J. Miner. Process. 39, 61–74 (1993)

    Article  Google Scholar 

  29. Davidson, M.R.: A numerical model of liquid–solid flow in a hydrocyclone with high solids fraction. International Symposium Numerical Methods in Multiphase Flows. ASME FED-185, pp. 29–39 (1994)

  30. Romero J., Sampaio R.: A numerical model for prediction of the air-core shape of hydrocyclone flow. Mech. Res. Commun. 26(3), 379–384 (1999)

    Article  MATH  Google Scholar 

  31. Hsieh K.T., Rajamani R.K.: Mathematical model of the hydrocyclone based on the physics of fluid flow. AIChE J. 37, 735–746 (1991)

    Article  Google Scholar 

  32. Malhotra A., Branion R.M.R., Hauptmann E.G.: Modeling the flow in a hydrocyclone. Can. J. Chem. Eng. 72, 953–960 (1994)

    Article  Google Scholar 

  33. Davidson M.R.: Similarity solutions for flow in hydrocyclones. Chem. Eng. Sci. 43(7), 1499–1505 (1988)

    Article  Google Scholar 

  34. Concha, F., Castro, B., Ovalle, E., Romero, J.: Numerical simulation of the flow pattern in a hydrocyclone. International Conference Innovation in Physical Separation Technology, Falmouth, UK, 4–5 June, pp. 35–60 (1998)

  35. Pericleous K.A., Rhodes N.: The hydrocyclone classifier—a numerical approach. Int. J. Miner. Process. 17, 23–43 (1986)

    Article  Google Scholar 

  36. Cullivan, J.C., Williams, R.A., Cross, C.R.: Verification of theoretical 3D-flow in a hydrocyclone using tomography. In: Proceedings 4th World Congress for Particle Technology, Sydney, pp. 1–9 (2000)

  37. Brennan, M.S., Holtham, P.N., Rong, R., Lyman, G.J.: Computational fluid dynamic simulation of dense medium cyclones. In: Proceedings 9th Australian Coal Preparation Conference. Yeppoon Australia, 13–17 October Paper, vol. B3 (2002)

  38. Devulapalli B., Rajamani R.K.: Application of LDV to the modelling of particle size classification in industrial hydrocyclones. ASME FED 191, 41–48 (1994)

    Google Scholar 

  39. Devulapalli, B., Rajamani, R.K.: A comprehensive CFD model for particle size classification in industrial hydrocyclones. Hydrocyclones 96, Cambridge UK, pp. 83–104 (1996)

  40. Devulapalli, B.: Hydrodynamic modelling of solid–liquid flows in large scale hydrocyclones, Ph.D. Thesis, University of Utah (1997)

  41. Baxter, L.L., Smith, P.J.: Turbulent dispersion of particles: the STP model. 7, 852–859 (1993)

  42. Boivin M., Simonin O., Squires K.D.: On the prediction of gas–solid flows with two-way coupling using large eddy simulation. Phys. Fluids 12, 2080–2090 (2000)

    Article  Google Scholar 

  43. Portela L.M., Oliemans R.V.A.: Direct and large eddy simulation of particle-laden flows using the point particle approach. In: Geurts, B.J. (eds) Direct and Large Eddy Simulation IV, pp. 53–460. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  44. Millelli M., Smith B.L., Lakehal D.: Large-eddy simulation of turbulent shear flows laden with bubbles. In: Geurts, B.J. (eds) Direct and Large Eddy Simulation IV, pp. 61–470. Kluwer Academic, Dordrecht (2001)

    Google Scholar 

  45. Ding J., Gidaspow D.: A bubbling fluidization model using kinetic theory of granular flow. AIChE J. 36, 523–528 (1990)

    Article  Google Scholar 

  46. Gidaspow, D., Bezburuah, R., Ding, J.: Hydrodynamics of circulating fluidized beds, kinetic theory approach. In: Fluidization VII, Proceedings of the 7th Engineering Foundation Conference on Fluidization, pp 75–82 (1992)

  47. Roco, M.C.: Particulate Two-Phase Flow. Butterworth-Heinemann, Boston (1993)

    Google Scholar 

  48. Clift R., Grace J.R., Weber M.E.: Bubbles, Drops and Particles. Academic Press, New York (1978)

    Google Scholar 

  49. Auton T.R.: The lift force on a spherical body in a rotational flow. J. Fluid Mech. 183, 199–218 (1987)

    Article  MATH  Google Scholar 

  50. Stovin V.R., Saul A.J.: A computational fluid dynamics (CFD) particle tracking approach to efficiency prediction. Water Sci. Technol. 37(1), 285–293 (1998)

    Article  Google Scholar 

  51. Nowakowski A.F., Cullivan J.C., Williams R.A., Dyakowski T.: Application of CFD to modelling of the flow in hydrocyclones. Is this a realizable option or still a research challenge?. Miner. Eng. 17, 661–669 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Najafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousavian, S.M., Najafi, A.F. Numerical simulations of gas–liquid–solid flows in a hydrocyclone separator. Arch Appl Mech 79, 395–409 (2009). https://doi.org/10.1007/s00419-008-0237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0237-2

Keywords

Navigation