Skip to main content
Log in

Generation of free-surface gravity waves by an unsteady Stokeslet

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The interaction of unsteady Stokeslets with the free surface of an initially quiescent incompressible fluid of infinite depth is investigated analytically for two- and three-dimensional cases. The disturbed flows are generated by an unsteady singular force moving perpendicularly downwards away from the surface. The analysis is based on the assumption that the motion satisfies the linearized unsteady Navier–Stokes equations with linear kinematic and dynamic boundary conditions. Firstly, the asymptotic representation for the transient free-surface waves due to an instantaneous Stokeslet is derived for a large time with a fixed distance-to-time ratio. As is well known, the corresponding inviscid waves predicted by the potential theory do not decay to zero as the time goes to infinity. In the present study, the transient waves predicted by the viscous theory eventually vanish due to the presence of viscosity, which is consistent with reality from the physical point of view. Secondly, the asymptotic solutions are obtained for the unsteady free-surface waves due to a harmonically oscillating Stokeslet. It is found that the unsteady waves can be decomposed into steady-state and transient responses. The steady state can be attained as time approaches infinity. It is shown that the viscosity of the fluid plays an important role in the evolution of the singularity-induced waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chwang, A.T., Wu, T.Y.T.: Hydromechanics of low-Reynolds-number flow Part 2. Singularity method for Stokes flows. J. Fluid Mech. 67, 787–815 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dabros, T.: A singularity method for calculating hydrodynamics force and particle velocities in low-Reynolds number flows. J. Fluid Mech. 156, 1–21 (1985)

    Article  MATH  Google Scholar 

  3. Pozrikidis, C.: A singularity method for unsteady linearized flow. Phys. Fluids A 1, 1508–1520 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Shatz, L.F.: Singularity method for oblate and prolate spheroids in Stokes and linearized oscillatory flow. Phys. Fluids 16, 664–677 (2004)

    Article  MathSciNet  Google Scholar 

  5. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics, pp. 79–82. Noordhoff International, Leyden (1973)

    Google Scholar 

  6. Olmstead, W.E., Gautesen, A.K.: Integral representations and the Oseen flow problem. Mech. Today 3, 125–190 (1976)

    Google Scholar 

  7. Smith, S.H.: Unsteady Stokes flow in two dimensions. J. Eng. Math. 21, 271–285 (1987)

    Article  MATH  Google Scholar 

  8. Avudainayagam, A., Geetha, J.: Unsteady singularities of Stokes flows in two dimensions. Int. J. Eng. Sci. 33, 1713–1724 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Avudainayagam, A., Geetha, J.: Oscillatory line singularities of Stokes’ flows. Int. J. Eng. Sci. 31, 1295–1299 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, A.T., Chwang, A.T.: The unsteady Stokeslet and Oseenlet. Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 214, 175–179 (2000)

    Article  Google Scholar 

  11. Shu, J.J., Chwang, A.T.: Generalized fundamental solutions for unsteady viscous flows. Phys. Rev. E 63, 051201 (2001)

    Article  Google Scholar 

  12. Venkatalaxmi, A., Padmavathi, B.S., Amaranath, T.: A general solution of unsteady Stokes equations. Fluid Dyn. Res. 35, 229–236 (2004)

    MATH  MathSciNet  Google Scholar 

  13. Shen, S.F., Crimi, P.: The theory for an oscillating thin airfoil as derived from the Oseen equations. J. Fluid Mech. 23, 585–609 (1965)

    Article  MathSciNet  Google Scholar 

  14. Murata, S., Miyake, Y., Yamamota, Y.: Study of three-dimensional unsteady Oseen flow. J. Fluid Mech. 86, 609–622 (1978)

    Article  MATH  Google Scholar 

  15. Price, W.G., Tan, M.Y.: Fundamental viscous solutions or transient Oseenlets associated with a body manoeuvring in a viscous fluid. Proc. R. Soc. Lond. A 438, 447–466 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Prosperetti, A., Cortelezzi, L.: Small-amplitude waves produced by a submerged vorticity distribution on the surface of a viscous fluid. Phys. Fluids 25, 2188–2192 (1982)

    Article  MATH  Google Scholar 

  17. Miles, J.W.: The Cauchy–Poisson problem for a viscous liquid. J. Fluid Mech. 34, 359–370 (1968)

    Article  MATH  Google Scholar 

  18. Debnath, L.: On effect of viscosity on transient wave motions in fluids. Int. J. Eng. Sci. 7, 615–625 (1969)

    Article  MATH  Google Scholar 

  19. Debnath, L.: The linear and nonlinear Cauchy–Poisson wave problems for an inviscid or viscous liquid. In: Rassias, T.M. (eds) Topics in Mathematical Analysis, pp. 123–155. World Scientific, Singapore (1989)

    Google Scholar 

  20. Prosperetti, A: Viscous effects on small-amplitude surface wave. Phys. Fluids 19, 195–203 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wu, G.X., Eatock Taylor, R., Greaves, D.M.: Viscous effect on the transient free surface flow in a two dimensional tank. J. Eng. Math. 40, 77–90 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lurye, J.R.: Wave height and wave resistance in the presence of a viscous wake. Phys. Fluids 16, 750–760 (1973)

    Article  MATH  Google Scholar 

  23. Lu, D.Q., Chwang, A.T.: Interfacial waves due to a singularity in a system of two semi-infinite fluids. Phys. Fluids 17, 102107 (2005)

    Article  MathSciNet  Google Scholar 

  24. Lu, D.Q., Chwang, A.T: Interfacial viscous ship waves near the cusp lines. Wave Motion 44, 563–572 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Liu, M.J., Tao, M.D.: Transient ship waves on an incompressible fluid of infinite depth. Phys. Fluids 13, 3610–3623 (2001)

    Article  MathSciNet  Google Scholar 

  26. Shu, J.J.: Transient Marangoni waves due to impulsive motion of a submerged body. Int. Appl. Mech. 40, 709–714 (2004)

    Article  MATH  Google Scholar 

  27. Lu, D.Q., Chwang, A.T.: Unsteady free-surface waves due to a submerged body moving in a viscous fluid. Phys. Rev. E 71, 066303 (2005)

    Article  MathSciNet  Google Scholar 

  28. Stoker, J.J.: Water Waves: the Mathematical Theory with Applications, pp. 163–168. Interscience, New York (1957)

    MATH  Google Scholar 

  29. Miles, J.W.: Transient gravity wave response to an oscillating pressure. J. Fluid Mech. 13, 145–150 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  30. Debnath, L.: Nonlinear Water Waves, p. 105. Academic, Boston (1994)

    MATH  Google Scholar 

  31. Lu, D.Q., Ng, C.O.: Interfacial capillary-gravity waves due to a fundamental singularity in a system of two semi-infinite fluids. J. Eng. Math. (2008). doi:10.1007/s10665-007-9199-6

  32. Lu, D.Q., Chwang, A.T.: Free-surface waves due to an unsteady Stokeslet in a viscous fluid of infinite depth. In: Cheng, L., Yeow, K. (eds) Proceedings of the 6th International Conference on Hydrodynamics, pp. 611–617. Perth Western Australia Taylor & Francis Group, London (2004)

    Google Scholar 

  33. Lu, D.Q., Dai, S.Q.: Generation of transient waves by impulsive disturbances in an inviscid fluid with an ice-cover. Arch. Appl. Mech. 76, 49–63 (2006)

    Article  MATH  Google Scholar 

  34. Lighthill, M.J.: Introduction to Fourier Analysis and Generalised Functions. Cambridge University Press, Cambridge (1958)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Q. Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, D.Q. Generation of free-surface gravity waves by an unsteady Stokeslet. Arch Appl Mech 79, 311–322 (2009). https://doi.org/10.1007/s00419-008-0233-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-008-0233-6

Keywords

Navigation